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Proof methods for quantifiers

Universal elimination
Universal statments can be instantiated to any object.

From ∀xS(x), we may infer S(c).

Existential introduction
If we have established a statement for an instance, we can also
establish the corresponding existential statement.

From S(c), we may infer ∃xS(x).
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Example

∀x[Cube(x)→ Large(x)]
∀x[Large(x)→ LeftOf(x, b)]
Cube(d)

∃x[Large(x) ∧ LeftOf(x, b)]
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Existential elimination

From ∃xS(x), we can infer things by assuming S(c) in a subproof,
if c is a new name not used otherwise.
Example: Scotland Yard searched a serial killer. The did not know
who he was, but for their reasoning, they called him “Jack the
ripper”.
This would have been an unfair procedure if there had been a real
person named Jack the ripper.
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Example

∀x[Cube(x)→ Large(x)]
∀x[Large(x)→ LeftOf(x, b)]
∃xCube(x)

∃x[Large(x) ∧ LeftOf(x, b)]
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Universal generalization (introduction)

If we introduce a new name c that is not used elsewhere, and can
prove S(c), then we can also infer ∀xS(x).
Example:
Theorem Every positive even number is the sum of two odd
numbers.
Proof Let n > 0 be even, i.e. n = 2m with m > 0. If m is odd,
then m + m = n does the job. If m is even, consider
(m − 1) + (m + 1) = n.
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Arguments involving multiple quantifiers

∃y[Girl(y) ∧ ∀x(Boy(x)→ Likes(x, y))]

∀x[Boy(x)→ ∃y(Girl(y) ∧ Likes(x, y))]

∀x[Boy(x)→ ∃y(Girl(y) ∧ Likes(x, y))]

∃y[Girl(y) ∧ ∀x(Boy(x)→ Likes(x, y))]
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A (counter)example
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560 / Summary of Rules

General Conditional Proof

(∀ Intro)

c P(c)

...

Q(c)

. ∀x (P(x) → Q(x))

Universal Introduction

(∀ Intro)

c

...

P(c)

. ∀x P(x)

where c does not occur out-

side the subproof where it is

introduced.

Universal Elimination

(∀ Elim)

∀x S(x)
...

. S(c)

Existential Introduction

(∃ Intro)

S(c)
...

. ∃x S(x)

Existential Elimination

(∃ Elim)

∃x S(x)
...

c S(c)

...
Q

. Q

where c does not occur out-

side the subproof where it is

introduced.

Summary of Rules
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(∃ Elim)

∃x S(x)
...

c S(c)

...
Q

. Q

where c does not occur out-

side the subproof where it is
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Example: ∀-Elim and ∃-Intro

∀x[Cube(x)→ Large(x)]
∀x[Large(x)→ LeftOf(x, b)]
Cube(d)

∃x[Large(x) ∧ LeftOf(x, b)]
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348 / Formal Proofs and Quantifiers

assumption, we can derive some sentence Q not containing the constant c,

then we can conclude that Q follows from the original premises.

Existential Elimination (∃ Elim):

∃x S(x)
...

c S(c)

...
Where c does not occur out-

side the subproof where it is

introduced.
Q

. Q

Again we think of the notation at the beginning of the subproof as the formal

counterpart of the English “Let c be an arbitrary individual such that S(c).”

The rule of existential elimination is quite analogous to the rule of disjunc-

tion elimination, both formally and intuitively. With disjunction elimination,comparison with

∨ Elim we have a disjunction and break into cases, one for each disjunct, and estab-

lish the same result in each case. With existential elimination, we can think

of having one case for each object in the domain of discourse. We are required

to show that, whichever object it is that satisfies the condition S(x), the same

result Q can be obtained. If we can do this, we may conclude Q.

To illustrate the two existential rules, we will give a formal counterpart to

the proof given on page 323.

1. ∀x [Cube(x) → Large(x)]

2. ∀x [Large(x) → LeftOf(x, b)]

3. ∃x Cube(x)

4. e Cube(e)

5. Cube(e) → Large(e) ∀ Elim: 1

6. Large(e) → Elim: 5, 4

7. Large(e) → LeftOf(e, c) ∀ Elim: 2

8. LeftOf(e, c) → Elim: 7, 6

9. Large(e) ∧ LeftOf(e, c) ∧ Intro: 6, 8

10. ∃x (Large(x) ∧ LeftOf(x,b)) ∃ Intro: 9

11. ∃x (Large(x) ∧ LeftOf(x, b)) ∃ Elim: 3, 4-10

Chapter 13
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Example: ∃-Elim

∀x[Cube(x)→ Large(x)]
∀x[Large(x)→ LeftOf(x, b)]
∃x Cube(x)

∃x[Large(x) ∧ LeftOf(x, b)]
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Universal quantifier rules / 343

To remind ourselves of this crucial restriction, we will introduce a new

graphical device, boxing the constant symbol in question and putting it in boxed constant

front of the assumption. We will think of the boxed constant as the formal

analog of the English phrase “Let c denote an arbitrary object satisfying P(c).”

General Conditional Proof (∀ Intro):

c P(c)

...
Where c does not occur out-

side the subproof where it is

introduced.
Q(c)

. ∀x (P(x) → Q(x))

When we give the justification for universal introduction, we will cite the

subproof, as we do in the case of conditional introduction. The requirement

that c not occur outside the subproof in which it is introduced does not pre-

clude it occurring within subproofs of that subproof. A sentence in a subproof

of a subproof still counts as a sentence of the larger subproof.

As a special case of ∀ Intro we allow a subproof where there is no sentential

assumption at all, just the boxed constant on its own. This corresponds to

the method of universal generalization discussed earlier, where one assumes

that the constant in question stands for an arbitrary object in the domain of

discourse.

Universal Introduction (∀ Intro):

c

...
Where c does not occur out-

side the subproof where it is

introduced.
P(c)

. ∀x P(x)

As we have indicated, we don’t really need both forms of ∀ Intro. Either

form could be eliminated in favor of the other. We use both because the first

is more natural while the second is more often used in logic textbooks (and

so something to be familiar with if you go on to study more logic).

Section 13.1
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Example: General Conditional Proof

∀x[Cube(x)→ Large(x)]
∀x[Large(x)→ LeftOf(x, b)]

∀x[Cube(x)→ LeftOf(x, b)
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Universal quantifier rules / 343

To remind ourselves of this crucial restriction, we will introduce a new

graphical device, boxing the constant symbol in question and putting it in boxed constant

front of the assumption. We will think of the boxed constant as the formal
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the method of universal generalization discussed earlier, where one assumes
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...
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Section 13.1
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Prenex normal form (reminder)

∃xCube(x)→ ∀ySmall(y)

∀x∀y(Cube(x)→ Small(y))
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Example with multiple quantifiers

∃y[Girl(y) ∧ ∀x(Boy(x)→ Likes(x, y))]

∀x[Boy(x)→ ∃y(Girl(y) ∧ Likes(x, y))]
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Example: de Morgan’s Law

¬∀x P(x)

∃x ¬P(x)

(is not valid in intuitionistic logic, only in classical logic)
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Example: The Barber Paradox

∃z ∃x [ManOf(x , z) ∧ ∀y (ManOf(y , z)→
(Shave(x , y)↔ ¬Shave(y , y)))]

⊥
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XMas
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Existence of Santa Clause

Theorem. Santa Clause exists.
Proof.
Assume to the contrary, that Santa Clause does not exist.
By ∃-Intro, there exists something that does not exist.
This is a contradiction. Hence, the assumption that Santa Clause
does not exist must be wrong.
Thus, Santa Clause exists. 2
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All reindeers have the same color

Theorem. Any number of reindeers have the same color.
Proof. By induction.
Basis: one reindeer has the same color (obviously!).

Inductive step: suppose that any collection of n reindeers has the same

color. We need to show that n + 1 reindeers have the same color, too.

By induction hypothesis, the first n reindeers have the same color. Take

out the last reindeer of these and replace it with the n + 1st. Again by

induction hypothesis, these have the same color. Hence, all n + 1

reindeers have the same color. 2
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Why the date of XMas cannot be surprising

Son: It is boring that XMas always is on the 24th.
Father: OK. This year, we will celebrate XMas on a day in the
week from 23th to 29th. You will not know the date beforehand.
Son: Good! Then it cannot be the 29th — if we hadn’t celebrated
it until the 28th, I would know beforehand that it must be the
29th, since this is the last day of the week!
Moreover, it cannot be the 28th — if we hadn’t celebrated it until
the 27th, I would know beforehand that it must be the 28th (the
29th already has been excluded above).
Son (cont’d): Similarly, it can be neither the 27th, nor the 26th,
nor the 25th, nor the 24th, nor the 23th.
Hence, you cannot fulfill you promise that I won’t know the date
beforehand.
Father: You will see, you won’t know the date beforehand.
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Why the date of XMas can be surprising

After all, XMas was celebrated on the 27th.
The son was quite surprised.
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A scheduling problem

A camel must travel 1000 miles across a desert to the nearest city.
She has 3000 bananas but can only carry 1000 at a time. For every
mile she walks, she needs to eat a banana. What is the maximum
number of bananas she can transport to the city?
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