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Proof methods for quantifiers

Universal elimination
Universal statments can be instantiated to any object.

From VxS(x), we may infer S(c).
Existential introduction

If we have established a statement for an instance, we can also
establish the corresponding existential statement.

From S(c), we may infer 3x5(x).
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Proof methods for quantifiers
Example

Vx[Cube(x) — Large(x)]
Vx[Large(x) — LeftOf(x, b)]
Cube(d)

Ix[Large(x) A LeftOf(x, b)]
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Proof methods for quantifiers

Existential elimination

From 3xS(x), we can infer things by assuming S(c) in a subproof,
if ¢ is a new name not used otherwise.

Example: Scotland Yard searched a serial killer. The did not know
who he was, but for their reasoning, they called him “Jack the
ripper”.

This would have been an unfair procedure if there had been a real
person named Jack the ripper.
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Proof methods for quantifiers
Example

Vx[Cube(x) — Large(x)]
Vx[Large(x) — LeftOf(x, b)]
IxCube(x

Ix[Large(x) A LeftOf(x, b)]
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Proof methods for quantifiers

Universal generalization (introduction)

If we introduce a new name c that is not used elsewhere, and can
prove S(c), then we can also infer VxS(x).

Example:

Theorem Every positive even number is the sum of two odd
numbers.

Proof Let n > 0 be even, i.e. n =2m with m > 0. If m is odd,
then m 4+ m = n does the job. If m is even, consider
(m—1)4+(m+1)=n.
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Proof methods for quantifiers

Arguments involving multiple quantifiers

% Jy[Girl(y) A Vx(Boy(x) — Likes(x,y))]
Vx[Boy(x) — Jy(Girl(y) A Likes(x,y))]

*»Vx[Boy(x) — Jy(Girl(y) A Likes(x,y))]
Jy[Girl(y) A Vx(Boy(x) — Likes(x,y))]
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Proof methods for quantifiers

A (counter)example
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Proof methods for quantifiers

Universal Elimination
(Vv Elim)

Vx S(x)

> S(c)
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Proof methods for quantifiers

Existential Introduction

(3 Intro)
S0
> E.Ix S(x)
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Proof methods for quantifiers

Example: V-Elim and J-Intro

Vx[Cube(x) — Large(x)]
Vx[Large(x) — LeftOf(x, b)]
Cube(d)

Ix[Large(x) A LeftOf(x, b)]
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Proof methods for quantifiers

Existential Elimination (3 Elim):

Ix S(x)

S(c)

Where ¢ does not occur out-
side the subproof where it is
introduced.
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Proof methods for quantifiers
Example: 3-Elim

Vx[Cube(x
Vx[Large(x
Ix Cube(x

~—

— Large(x)]
— LeftOf(x, b)]

~

Ix[Large(x

~—

A LeftOf (x, b)]
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Proof methods for quantifiers

General Conditional Proof (V Intro):

[c]P(o)

Where ¢ does not occur out-
side the subproof where it is
introduced.

>| Vx

P(x) = Q(x))
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Proof methods for quantifiers
Example: General Conditional Proof

Vx[Cube(x) — Large(x)]
Vx[Large(x) — LeftOf(x, b)]

Vx[Cube(x) — LeftOf(x, b)
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Proof methods for quantifiers

Universal Introduction (V Intro):

Till Mossakowski

Where ¢ does not occur out-
side the subproof where it is
introduced.
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Proof methods for quantifiers

Prenex normal form (reminder)

IxCube(x) — VySmall(y)
*»VxVy(Cube(x) — Small(y))
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Proof methods for quantifiers
Example with multiple quantifiers

}‘ 3y[Girl(y) A Vx(Boy(x) — Likes(x,y))]
Vx[Boy(x) — Jy(Girl(y) A Likes(x,y))]
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Proof methods for quantifiers

Example: de Morgan's Law

=Vx P(x)
*» Ix =P(x)

(is not valid in intuitionistic logic, only in classical logic)
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Proof methods for quantifiers
Example: The Barber Paradox

dz Ix [ManOf(x,z) AVy (ManORfly, z) —
(Shave(x, y) <+ —Shave(y, y)))]

L
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XMas
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XMas

Existence of Santa Clause

Theorem. Santa Clause exists.

Proof.

Assume to the contrary, that Santa Clause does not exist.

By 3-Intro, there exists something that does not exist.

This is a contradiction. Hence, the assumption that Santa Clause
does not exist must be wrong.

Thus, Santa Clause exists. O
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XMas

All reindeers have the same color

Theorem. Any number of reindeers have the same color.
Proof. By induction.
Basis: one reindeer has the same color (obviously!).

Inductive step: suppose that any collection of n reindeers has the same
color. We need to show that n + 1 reindeers have the same color, too.
By induction hypothesis, the first n reindeers have the same color. Take
out the last reindeer of these and replace it with the n+ 1st. Again by
induction hypothesis, these have the same color. Hence, all n 41
reindeers have the same color. O
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XMas

Why the date of XMas cannot be surprising

Son: It is boring that XMas always is on the 24th.

Father: OK. This year, we will celebrate XMas on a day in the
week from 23th to 29th. You will not know the date beforehand.
Son: Good! Then it cannot be the 29th — if we hadn’t celebrated
it until the 28th, | would know beforehand that it must be the
29th, since this is the last day of the week!

Moreover, it cannot be the 28th — if we hadn’t celebrated it until
the 27th, | would know beforehand that it must be the 28th (the
29th already has been excluded above).

Son (cont'd): Similarly, it can be neither the 27th, nor the 26th,
nor the 25th, nor the 24th, nor the 23th.

Hence, you cannot fulfill you promise that | won't know the date
beforehand.

Father: You will see, you won't know the date beforehand.
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Why the date of XMas can be surprising

After all, XMas was celebrated on the 27th.
The son was quite surprised.
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A scheduling problem

A camel must travel 1000 miles across a desert to the nearest city.
She has 3000 bananas but can only carry 1000 at a time. For every
mile she walks, she needs to eat a banana. What is the maximum
number of bananas she can transport to the city?
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