Logik für Informatiker Logic for computer scientists

Till Mossakowski

WiSe 2013/14

Proof methods for quantifiers

Universal elimination

Universal statments can be instantiated to any object.

From $\forall x S(x)$, we may infer S(c).

Existential introduction

If we have established a statement for an instance, we can also establish the corresponding existential statement.

From S(c), we may infer $\exists x S(x)$.


```
\forall x [\mathsf{Cube}(x) \to \mathsf{Large}(x)]
\forall x [Large(x) \rightarrow LeftOf(x, b)]
Cube(d)
\exists x [Large(x) \land LeftOf(x, b)]
```

Existential elimination

From $\exists x S(x)$, we can infer things by assuming S(c) in a subproof, if c is a new name not used otherwise.

Example: Scotland Yard searched a serial killer. The did not know who he was, but for their reasoning, they called him "Jack the ripper".

This would have been an unfair procedure if there had been a real person named Jack the ripper.


```
\forall x [Cube(x) \rightarrow Large(x)]
\forall x [Large(x) \rightarrow LeftOf(x, b)]
\exists xCube(x)
\exists x [Large(x) \land LeftOf(x, b)]
```

Universal generalization (introduction)

If we introduce a new name c that is not used elsewhere, and can prove S(c), then we can also infer $\forall x S(x)$. Example:

Theorem Every positive even number is the sum of two odd numbers.

Proof Let n > 0 be even, i.e. n = 2m with m > 0. If m is odd, then m + m = n does the job. If m is even, consider (m-1) + (m+1) = n.

7/27

Arguments involving multiple quantifiers

$$\exists y[Girl(y) \land \forall x(Boy(x) \rightarrow Likes(x, y))] \\ \forall x[Boy(x) \rightarrow \exists y(Girl(y) \land Likes(x, y))]$$

$$\exists y[\mathsf{Girl}(y) \land \forall x(\mathsf{Boy}(x) \to \exists y(\mathsf{Girl}(y) \land \mathsf{Likes}(x, y))]$$

A (counter)example

Т

 \triangleright

Universal Elimination $(\forall \text{ Elim})$

$$\begin{cases} \forall x S(x) \\ \vdots \\ S(c) \end{cases}$$

문 🛌 문

Existential Introduction (∃ Intro) S(c) : ⊳ ∃x S(x)

-

Example: ∀-Elim and ∃-Intro

```
 \begin{array}{l} \forall x [Cube(x) \rightarrow Large(x)] \\ \forall x [Large(x) \rightarrow LeftOf(x,b)] \\ Cube(d) \\ \hline \exists x [Large(x) \land LeftOf(x,b)] \end{array}
```

Existential Elimination (\exists Elim):

Where c does not occur outside the subproof where it is introduced.

Example: ∃-**Elim**

```
 \begin{array}{l} \forall x [Cube(x) \rightarrow Large(x)] \\ \forall x [Large(x) \rightarrow LeftOf(x,b)] \\ \exists x \ Cube(x) \\ \exists x [Large(x) \land LeftOf(x,b)] \end{array}
```

General Conditional Proof (\forall Intro):

Where c does not occur outside the subproof where it is introduced.

Example: General Conditional Proof

$$\begin{array}{l} \forall x [\mathsf{Cube}(\mathsf{x}) \to \mathsf{Large}(\mathsf{x})] \\ \forall x [\mathsf{Large}(\mathsf{x}) \to \mathsf{LeftOf}(\mathsf{x},\mathsf{b})] \\ \forall x [\mathsf{Cube}(\mathsf{x}) \to \mathsf{LeftOf}(\mathsf{x},\mathsf{b}) \end{array} \end{array}$$

⊒ ▶

Universal Introduction (\forall Intro):

Where c does not occur outside the subproof where it is introduced.

Prenex normal form (reminder)

$$\exists x Cube(x) \rightarrow \forall y Small(y)$$

 $\forall x \forall y (Cube(x) \rightarrow Small(y))$

-≣⇒

Example with multiple quantifiers

$$\exists y[Girl(y) \land \forall x(Boy(x) \rightarrow Likes(x, y))] \\ \forall x[Boy(x) \rightarrow \exists y(Girl(y) \land Likes(x, y))]$$

Example: de Morgan's Law

$$\begin{bmatrix} \neg \forall x \ \mathsf{P}(x) \\ \exists x \ \neg \mathsf{P}(x) \end{bmatrix}$$

(is not valid in intuitionistic logic, only in classical logic)

Example: The Barber Paradox

$$\exists z \exists x [ManOf(x, z) \land \forall y (ManOf(y, z) \rightarrow (Shave(x, y) \leftrightarrow \neg Shave(y, y)))]$$

글▶ 글

XMas

æ

-> -< ≣ >

Im ▶ < 10</p>

Existence of Santa Clause

Theorem. Santa Clause exists.

Proof.

Assume to the contrary, that Santa Clause does not exist.

By \exists -Intro, there exists something that does not exist.

This is a contradiction. Hence, the assumption that Santa Clause does not exist must be wrong.

Thus, Santa Clause exists. \Box

All reindeers have the same color

Theorem. Any number of reindeers have the same color.

Proof. By induction.

Basis: one reindeer has the same color (obviously!).

Inductive step: suppose that any collection of n reindeers has the same color. We need to show that n + 1 reindeers have the same color, too. By induction hypothesis, the first n reindeers have the same color. Take out the last reindeer of these and replace it with the n + 1st. Again by induction hypothesis, these have the same color. Hence, all n + 1 reindeers have the same color. \Box

Why the date of XMas cannot be surprising

Son: It is boring that XMas always is on the 24th. Father: OK. This year, we will celebrate XMas on a day in the week from 23th to 29th. You will not know the date beforehand. Son: Good! Then it cannot be the 29th — if we hadn't celebrated it until the 28th, I would know beforehand that it must be the 29th, since this is the last day of the week!

Moreover, it cannot be the 28th — if we hadn't celebrated it until the 27th, I would know beforehand that it must be the 28th (the 29th already has been excluded above).

Son (cont'd): Similarly, it can be neither the 27th, nor the 26th, nor the 25th, nor the 24th, nor the 23th.

Hence, you cannot fulfill you promise that I won't know the date beforehand.

Father: You will see, you won't know the date beforehand.

Why the date of XMas can be surprising

After all, XMas was celebrated on the 27th. The son was quite surprised.

A scheduling problem

A camel must travel 1000 miles across a desert to the nearest city. She has 3000 bananas but can only carry 1000 at a time. For every mile she walks, she needs to eat a banana. What is the maximum number of bananas she can transport to the city?

