Logik für Informatiker Logic for computer scientists

Till Mossakowski

WiSe 2013/14

Soundness and Completeness

Tautological consequence

A sentence S is a tautological consequence of a set of sentences $\mathcal T,$ written

$$\mathcal{T}\models_{\mathcal{T}} S,$$

if all valuations of atomic formulas with truth values that make all sentences in \mathcal{T} true also make S true.

Propositional proofs

S is $\mathcal{F}_{\mathcal{T}}$ -provable from \mathcal{T} , written

$\mathcal{T} \vdash_{\mathcal{T}} S$,

if there is a formal proof of S with premises drawn from \mathcal{T} using the elimination and introduction rules for $\lor, \land, \neg, \rightarrow, \leftrightarrow$ and \bot . Again note: \mathcal{T} may be infinite.

Soundness

Theorem 1. The proof calculus $\mathcal{F}_{\mathcal{T}}$ is sound, i.e. if

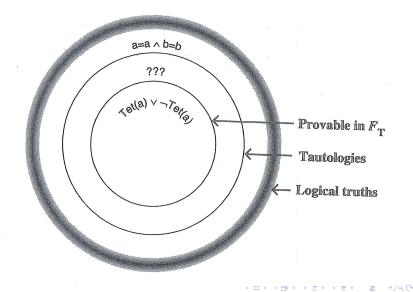
 $\mathcal{T} \vdash_{\mathcal{T}} S$,

then

$$\mathcal{T}\models_{\mathcal{T}} S.$$

Proof: Book: by contradiction, using the first invalid step. Here: by induction on the length of the proof.

Soundness



Completeness

Theorem 2 (Bernays, Post). The proof calculus $\mathcal{F}_{\mathcal{T}}$ is complete, i.e. if

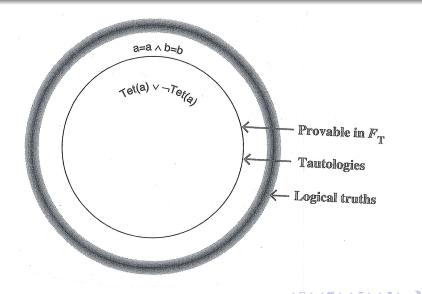
$$\mathcal{T}\models_{\mathcal{T}} S,$$

then

$$\mathcal{T} \vdash_{\mathcal{T}} S.$$

This theorem will be proved later in the lecture.

Completeness



Quantifiers

Quantifiers: Motivating examples

$$\begin{array}{l} \forall x \ Cube(x) \ ("All \ objects \ are \ cubes.") \\ \forall x \ (Cube(x) \rightarrow Large(x)) \ ("All \ cubes \ are \ large.") \\ \forall x \ Large(x) \ ("All \ objects \ are \ large.") \end{array}$$

 $\exists x \ Cube(x)$

"There exists a cube."

 $\exists x \ (Cube(x) \land Large(x))$

"There exists a large cube."

The four Aristotelian forms

All P's are Q's.
$$\forall x(P(x) \rightarrow Q(x))$$
Some P's are Q's. $\exists x(P(x) \land Q(x))$ No P's are Q's. $\forall x(P(x) \rightarrow \neg Q(x))$ Some P's are not Q's. $\exists x(P(x) \land \neg Q(x))$

Note:

 $\forall x(P(x) \rightarrow Q(x))$ does not imply that there are some P's. $\exists x(P(x) \land Q(x))$ does not imply that not all P's are Q's.

First-order language

A first-order language consists of

- a set of predicate symbols with arities, like $Smaller^{(2)}$, $Dodec^{(1)}$, $Between^{(3)}$, $\leq^{(2)}$, including propositional symbols (nullary predicate symbols), like $A^{(0)}$, $B^{(0)}$, $C^{(0)}$, (written uppercase)
- its names or constants for individuals, like *a*, *b*, *c*, (written lowercase)
- its function symbols with arities, like $f^{(1)}, +^{(2)}, \times^{(2)}$.

Usually, arities are omitted.

Well-formed terms

$$t ::= a$$

$$| x$$

$$| f^{(n)}(t_1, \dots, t_n)$$

individual constant variable application of function symbols to terms t_1, \ldots, t_n (recursive definition)

Usually, arities are omitted.

Variables are: t, u, v, w, x, y, z, possibly with subscripts. Individual constants are: a, b, c, d, e, f, n, and others.

Well-formed formulas

$F ::= P^{(n)}(t_1,\ldots,t_n)$	application of predicate symbols to terms t_1, \ldots, t_n
$\mid t_1 = t_2$	equality
$ \perp$	contradiction
¬ <i>F</i>	negation
$ (F_1 \land \ldots \land F_n) $	conjunction
$ (F_1 \vee \ldots \vee F_n) $	disjunction
$\mid (F_1 ightarrow F_2)$	implication
$ (F_1 \leftrightarrow F_2) $	equivalence
$ \forall \nu F$	universal quantification
$\exists \nu F$	existential quantification

The variable ν is said to be bound in $\forall \nu F$ and $\exists \nu F$.

Here, F, and $F_1 \ldots F_n$ occurring on the right-hand side are formulas again (recursive definition).

The outermost parentheses of a well-formed formula can be omitted:

 $Cube(x) \wedge Small(x)$

In general, parentheses are important to determine the scope of a quantifier (see next slide).

Free and bound variables

An occurrence of a variable in a formula that is not bound (by a quantifier) is said to be free.

$\exists y \ LeftOf(x, y)$	x is free, y is bound	
$(Cube(x) \land Small(x))$	x is free, y is bound	
$ ightarrow \exists y \; LeftOf(x,y)$		
$\exists x \ (Cube(x) \land Small(x))$	Both occurrences of x are bound	
$\exists x \ Cube(x) \land Small(x)$	The first occurrence of x is bound,	
	the second one is free	

Sentences

A sentence is a well-formed formula without free variables.

 \perp $A \wedge B$

 $Cube(a) \lor Tet(b)$

 $\forall x \ (Cube(x) \rightarrow Large(x))$

 $\forall x ((Cube(x) \land Small(x)) \rightarrow \exists y \ LeftOf(x, y))$

글 🖌 🖌 글 🕨

Semantics of quantification

- We need to fix some domain of discourse.
- $\forall x \ S(x)$ is true iff for every object in the domain of discourse with name $n, \ S(n)$ is true.
- $\exists x \ S(x)$ is true iff for some object in the domain of discourse with name $n, \ S(n)$ is true.
- Not all objects need to have names hence we assume that for objects, names n_1, n_2, \ldots can be invented "on the fly".
- N.B. "iff" means "if and only if" and expresses (meta) equivalence

The game rules

Form	Your commitment	Player to move	Goal
$P \lor Q$	TRUE	you Tarski's World	Choose one of P, Q that is true.
$P \wedge Q$	TRUE	Tarski's World you	Choose one of P, Q that is false.
∃x P(x)	TRUE	you	Choose some b that satisfies
	FALSE	Tarski's World	the wff $P(x)$.
$\forall x P(x)$	TRUE	Tarski's World	Choose some b that does not
	FALSE	you	satisfy $P(x)$.

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Logical consequence for quantifiers

```
 \begin{array}{l} \forall x \; \mathsf{Cube}(x) \\ \forall x \; \mathsf{Small}(x) \\ \hline \forall x (\mathsf{Cube}(x) \land \mathsf{Small}(x)) \end{array} \end{array}
```

However: ignoring quantifiers does not work!

```
\exists x(Cube(x) \rightarrow Small(x)) \\ \exists x Cube(x) \\ \exists x Small(x) \end{cases}
```

```
\exists x Cube(x) \\ \exists x Small(x) \\ \exists x(Cube(x) \land Small(x))
```

Tautologies do not distribute over quantifiers

$$\exists x \ Cube(x) \lor \exists x \neg Cube(x)$$

is a logical truth, but

$$\forall x \ Cube(x) \lor \forall x \neg Cube(x)$$

is not. By contrast,

$$\forall x \ Cube(x) \lor \neg \forall x \ Cube(x)$$

is a tautology.

Truth-functional form

Replace all top-level quantified sub-formulas (i.e. those not ocurring below another quantifier) by propositional letters. Replace multiple occurrences of the same sub-formula by the same propositional letter.

A quantified sentence of FOL is said to be a tautology iff its truth-functional form is a tautology.

$$\forall x \ Cube(x) \lor \neg \forall x \ Cube(x)$$

becomes

$$A \lor \neg A$$

Truth functional form — examples

FO sentence	t.f. form
$\forall x Cube(x) \lor \neg \forall x Cube(x)$	$A \vee \neg A$
$(\exists yTet(y) \land \forall zSmall(z)) \to \forall zSmall(z)$	$(A\wedgeB)\toB$
$\forall x Cube(x) \lor \exists y Tet(y)$	$A \lor B$
$\forall xCube(x) \to Cube(a)$	$A\toB$
$\forall x (Cube(x) \lor \neg Cube(x))$	А
$\forall x (Cube(x) \to Small(x)) \lor \exists x Dodec(x)$	$A \lor B$

æ

≪ ≣⇒