Logik für Informatiker Logic for computer scientists

Till Mossakowski

WiSe 2013/14

Proofs for Boolean Logic

Conjunction Elimination $(\land Elim)$

$$(\land \mathbf{Elim})$$

$$P_1 \land \dots \land P_i \land \dots \land P_n$$

$$\vdots$$

$$P_i$$

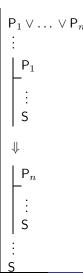
Conjunction Introduction $(\land Intro)$

```
 \begin{array}{c|c} P_1 \\ \downarrow \\ P_n \\ \vdots \\ P_1 \land \ldots \land P_n \end{array}
```

Disjunction Introduction (∨ Intro)

Disjunction Elimination

(∀ Elim)



⊥ Introduction
(⊥ Intro)

| P
| :
| ¬P
| :
| :

Negation Introduction (¬ Intro)

Negation Elimination

Strategies and tactics in Fitch

- 1 Understand what the sentences are saying.
- Decide whether you think the conclusion follows from the premises.
- If you think it does not follow, or are not sure, try to find a counterexample.
- If you think it does follow, try to give an informal proof.
- If a formal proof is called for, use the informal proof to guide you in finding one.
- In giving consequence proofs, both formal and informal, don't forget the tactic of working backwards.
- In working backwards, though, always check that your intermediate goals are consequences of the available information.

Strategies in Fitch, cont'd

- Always try to match the situation in your proof with the rules in the book (see book appendix for a complete list)
- Look at the main connective in a premise, apply the corresponding elimination rule (forwards)
- Or: look at the main connective in the conclusion, apply the corresponding introduction rule (backwards)

Conditionals

Conditionals

Р	Q	$P\toQ$
Т	Т	\mathbf{T}
\mathbf{T}	F	\mathbf{F}
\mathbf{F}	${ m T}$	${f T}$
F	F	${f T}$

Game rule: $P \rightarrow Q$ is replaced by $\neg P \lor Q$.

Formalisation of conditional sentences

- The following English constructions are all translated $P \rightarrow Q$: If P then Q; Q if P; P only if Q; and Provided P, Q.
- Unless P, Q and Q unless P are translated: $\neg P \rightarrow Q$.
- Q is a logical consequence of P_1, \ldots, P_n if and only if the sentence $(P1 \wedge \cdots \wedge P_n) \rightarrow Q$ is a logical truth.

Conditional Elimination $(\rightarrow \text{Elim})$

$$\begin{array}{|c|c|} \hline P \rightarrow G \\ \vdots \\ P \\ \vdots \\ Q \\ \end{array}$$

Conditional Introduction

$$(\to \mathbf{Intro})$$

$$\begin{array}{c|c}
 & P \\
 & \vdots \\
 & Q \\
 & P \rightarrow Q
\end{array}$$

Biconditionals

Р	Q	$P \leftrightarrow Q$
Т	Т	\mathbf{T}
\mathbf{T}	F	\mathbf{F}
F	${ m T}$	\mathbf{F}
F	F	${f T}$

Game rule: $P \leftrightarrow Q$ is replaced by $(P \rightarrow Q) \land (Q \rightarrow P)$.

Biconditionals and logical equivalence

P and Q are logically equivalent $(P \Leftrightarrow Q)$ if and only if the sentence $P \leftrightarrow Q$ is a logical truth.

Note that $P \Leftrightarrow Q$ is a meta statement, not a sentence of PL1.

Conversational implicature

"Max is home unless Claire is at the library" can be formalised as

$$\neg Library(claire) \rightarrow Home(max)$$

but many people would formalise it as

$$\neg Library(claire) \leftrightarrow Home(max)$$

The part

$$\neg Library(claire) \leftarrow Home(max)$$

is called conservational implicature. It is possibly, but not necessarily meant by the English sentence.

An addition can cancel the implicature:

"On the other hand, if Claire is at the library, I have no idea where Max is."

Truth-functional completeness

Definition

A logical connective is truth-functional, if the truth value of a complex sentence built up using these connectives depends on nothing more than the truth values of the simpler sentences from which it is built.

Truth-functional: \land , \lor , \neg , \leftarrow , \leftrightarrow

Not truth-functional: because, after, necessarily

Definition

A set of logical connectives is truth-functionally complete, if it suffices to express every truth-functional connective.

Theorem

The set $\{\land,\lor,\neg\}$ is truth-functionally complete.

Example: a binary truth-functional connective

Р	Q	Neither P nor Q	
Т	Т	F	
Τ	F	F	
F	T	F	
F	F	Т	$\neg P \wedge \neg Q$

Neither P nor Q can be expressed as $\neg P \land \neg Q$.

Example: a ternary truth-functional connective

Р	Q	R	♣ (P,Q,R)	
Т	Т	Т	Т	$P \wedge Q \wedge R$
Т	Т	F	T	$P \wedge Q \wedge \neg R$
Т	F	T	F	
Т	F	F	F	
F	Т	T	T	$\neg P \land Q \land R$
F	Т	F	F	
F	F	T	T	$\neg P \land \neg Q \land R$
F	F	F	F	

A(P,Q,R) can be expressed as

$$(P \land Q \land R) \lor (P \land Q \land \neg R) \lor (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R).$$

Logical equivalences of (bi)conditionals

$$\begin{array}{cccc} P \rightarrow Q & \Leftrightarrow & \neg Q \rightarrow \neg P \\ P \rightarrow Q & \Leftrightarrow & \neg P \vee Q \\ \neg (P \rightarrow Q) & \Leftrightarrow & P \wedge \neg Q \\ P \leftrightarrow Q & \Leftrightarrow & (P \rightarrow Q) \wedge (Q \rightarrow P) \\ P \leftrightarrow Q & \Leftrightarrow & (P \wedge Q) \vee (\neg P \wedge \neg Q) \end{array}$$

Biconditional Elimination

$$\begin{array}{c|c} \textbf{Biconditional Eliminatio} \\ (\leftrightarrow \textbf{Elim}) \\ \hline & P \leftrightarrow Q \ (\text{or} \ Q \leftrightarrow P) \\ \vdots \\ & P \\ \vdots \\ & Q \\ \end{array}$$

Biconditional Introduction $(\leftrightarrow Intro)$

$$\begin{array}{c|c} & P \\ & \vdots \\ & Q \\ & Q \\ & \vdots \\ & P \\ & P \leftrightarrow Q \end{array}$$

Reiteration (Reit)

Soundness and completeness

Object and meta theory

```
Object theory = reasoning within a formal proof system (e.g. Fitch)
```

Meta theory = reasoning about a formal proof system

Tautological consequence

A sentence S is a tautological consequence of a set of sentences \mathcal{T} , written

$$\mathcal{T} \models_{\mathcal{T}} S$$
,

if all valuations of atomic formulas with truth values that make all sentences in $\mathcal T$ true also make S true.

Propositional proofs

S is \mathcal{F}_T -provable from \mathcal{T} , written

$$\mathcal{T} \vdash_{\mathcal{T}} S$$
,

if there is a formal proof of S with premises drawn from $\mathcal T$ using the elimination and introduction rules for $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$ and \bot . Again note: $\mathcal T$ may be infinite.

Soundness

Theorem 1. The proof calculus \mathcal{F}_T is sound, i.e. if

$$\mathcal{T} \vdash_{\mathcal{T}} S$$
,

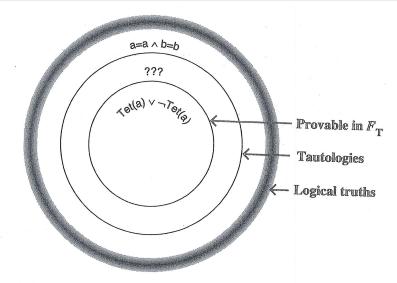
then

$$\mathcal{T} \models_{\mathcal{T}} \mathcal{S}$$
.

Proof: Book: by contradiction, using the first invalid step.

Here: by induction on the length of the proof.

Soundness



Completeness

Theorem 2 (Bernays, Post). The proof calculus $\mathcal{F}_{\mathcal{T}}$ is complete, i.e. if

$$\mathcal{T} \models_{\mathcal{T}} S$$
,

then

$$\mathcal{T} \vdash_{\mathcal{T}} \mathcal{S}$$
.

This theorem will be proved later in the lecture.

Completeness

