# Logik für Informatiker Logic for computer scientists

Till Mossakowski

WiSe 2013/14

# The Logic of Boolean Connectives

# Logical necessity

#### A sentence is

- logically necessary, or logically valid, if it is true in all circumstances (worlds),
- logically possible, or satisfiable, if it is true in some circumstances (worlds),
- logically impossible, or unsatisfiable, if it is true in no circumstances (worlds).

#### Logically possible



#### Logically and physically possible



Logically impossible  $P \land \neg P$   $a \neq a$ 

Logically necessary  $P \lor \neg P$  a = a

伺 ト イヨト イヨト

## Logic, Boolean logic and Tarski's world

- A sentence is
  - logically necessary, or logically valid, if it is true in all circumstances (worlds),
  - TW-necessary, if it is true in all worlds of Tarski's world,
  - a tautology, if it is true in all valuations of the atomic sentences with {TRUE, FALSE}.



æ

## The truth table method

- A sentence is a tautology if and only if it evaluates to TRUE in all rows of its complete truth table.
- Truth tables can be constructed with the program Boole.

#### Tautological equivalence and consequence

- Two sentences *P* and *Q* are tautologically equivalent, if they evaluate to the same truth value in all valuations (rows of the truth table).
- Q is a tautological consequence of  $P_1, \ldots, P_n$  if and only if every row that assigns TRUE to each of  $P1, \ldots, P_n$  also assigns TRUE to Q.
- If Q is a tautological consequence of  $P_1, \ldots, P_n$ , then Q is also a logical consequence of  $P_1, \ldots, P_n$ .
- Some logical consequences are not tautological ones.

The Logic of Boolean Connectives

#### de Morgan's laws and double negation

$$\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$$
$$\neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$$
$$\neg \neg P \Leftrightarrow P$$

Note:  $\neg$  binds stronger than  $\wedge$  and  $\vee.$  Bracktes are needed to override this.

# Negation normal form

- Substitution of equivalents: If P and Q are logically equivalent: P ⇔ Q then the results of substituting one for the other in the context of a larger sentence are also logically equivalent: S(P) ⇔ S(Q)
- A sentence is in negation normal form (NNF) if all occurrences of ¬ apply directly to atomic sentences.
- Any sentence built from atomic sentences using just ∧, ∨, and
  ¬ can be put into negation normal form by repeated
  application of the de Morgan laws and double negation.

## Distributive laws

- For any sentences P, Q, and R:
  - Distribution of  $\wedge$  over  $\vee:$

$$P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R).$$

• Distribution of  $\lor$  over  $\land$ :

 $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R).$ 

## Conjunctive and disjunctive normal form

- A sentence is in conjunctive normal form (CNF) if it is a conjunction of one or more disjunctions of one or more literals.
- Distribution of ∨ over ∧ allows you to transform any sentence in negation normal form into conjunctive normal form.

## Disjunctive normal form

- A sentence is in disjunctive normal form (DNF) if it is a disjunction of one or more conjunctions of one or more literals.
- Distribution of  $\wedge$  over  $\vee$  allows you to transform any sentence in negation normal form into disjunctive normal form.
- Some sentences are in both CNF and DNF.