Vorbemerkungen

if
$$(x > y)$$
 $z = x$; else $z = y$;

Wenn es blaue Tiger regnet, dann fressen alle Kirschbäume schwarze Tomaten.

$$\begin{aligned} q(1) &= 1, \\ q(i) &= q(i-1) + 2i - 1 \text{ für } i \geq 2 \end{aligned}$$

Welchen Wert hat q(6)?

24 ist durch 2 teilbar. Wenn 24 durch 2 teilbar ist

24 ist durch 3 teilbar. und 24 durch 3 teilbar ist,

24 ist durch 6 teilbar. so ist 24 durch 6 teilbar.

Literatur

- J. DASSOW: Logik für Informatiker. B.G. Teubner, Wiesbaden, 2005.
- M. Kreuzer, St. Kühling: Logik für Informatiker. Pearson Studium 2006.
- U. Schöning: Logik für Informatiker. Reihe Informatik, Bd. 56, Bl-Wissenschaftsverlag, Mannheim, 1989.
- J. Kelly: Logik (im Klartext). Pearson Studium, München, 2003.
- D. GABBAY: Elementary Logics: A Procedural Perspective. Prentice Hall Europe, 1998.

Logik

2

Aussagen

Eine Aussage ist ein sprachliches oder gedankliches Gebilde, dem genau einer der beiden Wahrheitswerte wahr oder falsch zukommt.

Prinzip der Zweiwertigkeit: Jede Aussage ist wahr oder falsch.

Prinzip vom ausgeschlossenen Widerspruch: Es gibt keine Aussage, die sowohl wahr als auch falsch ist.

Die Sonne kreist um die Erde.

Heute ist schönes Wetter.

x ist eine Primzahl.

Es gibt unendlich viele Primzahlzwillinge.

Wörter

Alphabet — nichtleere Menge Buchstabe — Element eines Alphabets

Wort (über V) — Folge von Buchstaben (aus V)

 V^* (bzw. V^+) — Menge aller (nichtleeren) Wörter über V

Produkt (Katenation) von Wörter — Hintereinanderschreiben von Wörtern

- v Teilwort von w $w = x_1vx_2$ für gewisse $x_1, x_2 \in V^*$
- v Anfangsstück von w w = vx für ein gewisses $x \in V^*$

 $\#_a(w)$ — Anzahl der Vorkommen des Buchstaben a im Wort w

$$|w| = \sum_{a \in V} \#_a(w)$$
 — Länge des Wortes $w \in V^*$

Aussagenlogischer Ausdruck - Definition

Alphabet
$$V = \{(,), \neg, \wedge, \vee, \rightarrow, \leftrightarrow\} \cup \underbrace{\{p_1, p_2, p_3, \dots, p_n, \dots\}}_{var}$$

Definition: i) Jede Variable p_i , $i \in \mathbb{N}$, ist ein aussagenlogischer Ausdruck über V.

ii) Sind A und B aussagenlogische Ausdrücke über V, so sind auch

$$\neg A, (A \land B), (A \lor B), (A \to B), (A \leftrightarrow B)$$

aussagenlogische Ausdrücke über V.

iii) Ein Wort über V ist nur dann ein aussagenlogischer Ausdruck über V, falls dies aufgrund endlich oftmaliger Anwendung von i) und ii) der Fall ist.

Aussagenlogischer Ausdruck - Beispiele

a)
$$\neg (p_1 \rightarrow \neg (p_2 \rightarrow p_3))$$
 — ja

b)
$$\neg \neg (p_1 \lor p_2)$$
 — ja

- c) $p_1 \rightarrow \neg p_2$ nein
- d) $(\vee p_1)$ nein

Definition: Ein aussagenlogischer Ausdruck heißt <u>Literal</u>, falls er die Form p_i oder $\neg p_i$ für ein $i \in \mathbb{N}$ hat.

Aussagenlogischer Ausdruck - Charakterisierung

Satz: Ein Wort A ist genau dann ein aussagenlogischer Ausdruck über V, wenn es die folgenden fünf Bedingungen (gleichzeitig) erfüllt:

- 1. Das Wort A beginnt mit einer Variablen oder mit \neg oder mit (.
- 2. Auf eine Variable oder) folgt in A das Symbol) oder ein Element aus $\{\land, \lor, \rightarrow, \leftrightarrow\}$, oder die Variable bzw.) ist das letzte Symbol des Wortes.
- 3. Auf ein Element aus $\{(,\neg,\wedge,\vee,\rightarrow,\leftrightarrow\}$ folgt in A eine Variable oder \neg oder (.
- 4. $\#_{(A)} = \#_{(A)} = \#_{\{\land,\lor,\to,\leftrightarrow\}}(A)$.
- 5. Für jede Stelle in A, an der (steht, d.h. A=W(W'), gibt es ein Wort B mit folgenden Eigenschaften:
 - -A = W(BW''),
 - für jedes echte Anfangsstück U von $(B \text{ gilt } \#_{(U)} \neq \#_{)}(U)$,
 - $\#_{(}((B) = \#_{)}((B) = \#_{\{\land,\lor,\to,\leftrightarrow\}}((B).$

Aussagenlogischer Ausdruck - Wertberechnung

Definition. Eine Belegung ist eine Funktion $\alpha: var \rightarrow \{0,1\}$

Definition: Der Wert $w_{\alpha}(C)$ eines aussalogischen Ausdruck C unter der Belegung α ist induktiv wie folgt definiert:

- Ist $C = p_i$ für eine Variable p_i , $i \in \mathbb{N}$, so gilt $w_{\alpha}(p_i) = \alpha(p_i)$.
- Ist $C = \neg A$, so gilt $w_{\alpha}(\neg A) = 0$ genau dann, wenn $w_{\alpha}(A) = 1$ gilt.
- Ist $C=(A\wedge B)$, so gilt $w_{\alpha}((A\wedge B))=1$ genau dann, wenn $w_{\alpha}(A)=w_{\alpha}(B)=1$ gilt.
- Ist $C=(A\vee B)$, so gilt $w_{\alpha}((A\vee B))=0$ genau dann, wenn $w_{\alpha}(A)=w_{\alpha}(B)=0$ gilt.
- Ist $C=(A\to B)$, so gilt $w_{\alpha}((A\to B))=0$ genau dann, wenn $w_{\alpha}(A)=1$ und $w_{\alpha}(B)=0$ gelten.
- Ist $C=(A\leftrightarrow B)$, so gilt $w_{\alpha}((A\leftrightarrow B))=1$ genau dann, wenn $w_{\alpha}(A)=w_{\alpha}(B)$ gilt.

Boolesche Funktion

Definition: Sei $n \in \mathbb{N}$. Unter einer <u>n</u>-stelligen Booleschen Funktion f verstehen wir eine Funktion von $\{0,1\}^n$ in $\{0,1\}$.

	x_1	x_2	x_3	$\mid b \mid$
	0	0	0	1
	0	0	1	0
	0	1	0	0
Beispiel:	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	1
	1	1	1	1

Satz: Für $n \in \mathbb{N}$ gibt es 2^{2^n} Boolesche Funktionen.

Ausdruck versus Funktion I

Definition: Sei A ein aussagenlogischer Ausdruck A mit $var(A) \subseteq \{p_1, p_2, \ldots, p_n\}$. Die von A induzierte n-stellige Boolesche Funktion $f_{A,n}$ ist durch

$$f_{A,n}(x_1,x_2,\ldots,x_n)=w_{\alpha}(A)$$
 mit $\alpha(p_i)=x_i$ für $1\leq i\leq n$

definiert.

x_1	x_2	$f_{(p_1 \wedge p_2)}(\underline{x})$	$f_{(p_1 \vee p_2)}(\underline{x})$	$f_{(p_1 \to p_2)}(\underline{x})$	$f_{(p_1 \leftrightarrow p_2)}(\underline{x})$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Ausdruck versus Funktion II

$$A = \neg(p_1 \to \neg(p_2 \to p_3))$$

$$B=(p_2 \rightarrow p_3), \ C=\neg B, \ D=(p_1 \rightarrow C) \ \mathrm{und} \ A=\neg D$$

$x_1 = \alpha(p_1)$	$x_2 = \alpha(p_2)$	$x_3 = \alpha(p_3)$	$w_{\alpha}(B)$	$w_{\alpha}(C)$	$w_{\alpha}(D)$	$w_{\alpha}(A)$
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	0	1	1	0
0	1	1	1	0	1	0
1	0	0	1	0	0	1
1	0	1	1	0	0	1
1	1	0	0	1	1	0
1	1	1	1	0	0	1

Semantische Äquivalenz

Definition: Ein aussagenlogischer Ausdruck A heißt semantisch äquivalent zum aussagenlogischen Ausdruck B, wenn für jede Belegung α die Beziehung $w_{\alpha}(A) = w_{\alpha}(B)$ gilt.

Bezeichnung: $A \equiv B$

Satz: Die semantische Äquivalenz ist eine Äquivalenzrelation auf der Menge der aussagenlogischen Ausdrücke.

Lemma: Seien A und B zwei aussagenlogische Ausdrücke und $n \in \mathbb{N}$ eine natürliche Zahl, so dass $var(A) \cup var(B) \subseteq \{p_1, p_2, \dots, p_n\}$ gilt. Dann sind A und B genau dann semantisch äquivalent, wenn $f_{A,n} = f_{B,n}$ gilt.

Tautologie, Kontradiktion, Erfüllbarkeit

Definition: i) Ein aussagenlogischer Ausdruck A heißt Tautologie, falls $w_{\alpha}(A) = 1$ für jede Belegung α gilt.

- ii) Ein aussagenlogischer Ausdruck A heißt Kontradiktion oder unerfüllbar, falls $w_{\alpha}(A) = 0$ für jede Belegung α gilt.
- iii) Ein aussagenlogischer Ausdruck A heißt <u>erfüllbar</u>, falls A keine Kontradiktion ist.

Lemma: Zwei aussagenlogische Ausdrücke A und B sind genau dann semantisch äquivalent, wenn der Ausdruck $(A \leftrightarrow B)$ eine Tautologie ist.

Tautologien I

Satz: Die folgenden aussagenlogische Ausdrücke sind Tautologien:

i) $(\neg \neg p_1 \leftrightarrow p_1)$ (doppelte Verneinung)

- ii) $((p_1 \wedge p_1) \leftrightarrow p_1)$
- iii) $((p_1 \vee p_1) \leftrightarrow p_1)$
- iv) $((p_1 \land p_2) \leftrightarrow (p_2 \land p_1))$ (Kommutativität der Konjunktion)
- v) $((p_1 \lor p_2) \leftrightarrow (p_2 \lor p_1))$ (Kommutativität der Disjunktion)
- vi) $((p_1 \leftrightarrow p_2) \leftrightarrow (p_2 \leftrightarrow p_1))$
- vii) $(((p_1 \land p_2) \land p_3) \leftrightarrow (p_1 \land (p_2 \land p_3)))$ (Assoziativität der Konjunktion)
- viii) $(((p_1 \lor p_2) \lor p_3) \leftrightarrow (p_1 \lor (p_2 \lor p_3)))$ (Assoziativität der Disjunktion)

Tautologien II

Satz: (Fortsetzung)

ix)
$$(((p_1 \land p_2) \lor p_3) \leftrightarrow ((p_1 \lor p_3) \land (p_2 \lor p_3)))$$
 (Distributivgesetz)
x) $(((p_1 \lor p_2) \land p_3) \leftrightarrow ((p_1 \land p_3) \lor (p_2 \land p_3)))$ (Distributivgesetz)
xi) $((p_1 \land p_2) \leftrightarrow \neg(\neg p_1 \lor \neg p_2))$ (de Morgan-Regel)
xii) $((p_1 \lor p_2) \leftrightarrow \neg(\neg p_1 \land \neg p_2))$ (de Morgan-Regel)
xiii) $((p_1 \to p_2) \leftrightarrow (\neg p_2 \to \neg p_1))$ (Kontraposition)
xiv) $((p_1 \to p_2) \leftrightarrow (\neg p_1 \lor p_2))$
xv) $((p_1 \leftrightarrow p_2) \leftrightarrow ((p_1 \to p_2) \land (p_2 \to p_1)))$
xvi) $((p_1 \land (p_1 \to p_2)) \to p_2)$
xvii) $((p_1 \to p_2) \land (p_2 \to p_3)) \to (p_1 \to p_3))$

Parallele Substitution I

Bezeichnung: psub(A, p, B) ist das Wort, das aus A entsteht, indem man jedes Vorkommen von p in A durch B ersetzt

Lemma: Seien A und B aussagenlogische Ausdrücke, p eine Variable und α eine Belegung. Ferner sei die Belegung β durch

$$\beta(q) = \begin{cases} \alpha(q) & q \neq p \\ w_{\alpha}(B) & q = p \end{cases}$$

definiert. Dann gilt

$$w_{\alpha}(psub(A, p, B)) = w_{\beta}(A)$$
.

Parallele Substitution II

Satz: Sind A eine Tautologie und p eine Variable, so ist für jeden aussagenlogischen Ausdruck B auch psub(A, p, B) eine Tautologie.

Satz: Sind A und A' zwei semantische äquivalente Ausdrücke und p eine Variable, so sind für jeden aussagenlogischen Ausdruck B auch die Ausdrücke psub(A, p, B) und psub(A', p, B) semantisch äquivalent.

Sequentielle Substitution und ein Lemma

Bezeichnung: Für aussagenlogische Ausdrücke A und B und einen Teilausdruck C von A ist ssub(A,C,B) die Menge der Wörter, die aus A entsteht, indem wir ein Vorkommen von C in A durch B ersetzen.

Satz: Seien B und C zwei semantisch äquivalente Ausdrücke, A ein Ausdruck und C ein Teilausdruck von A. Dann ist A zu jedem Ausdruck aus ssub(A,C,B) semantisch äquivalent.

Satz: Seien B und C zwei semantisch äquivalente Ausdrücke, A eine Tautologie und C ein Teilausdruck von A. Dann ist jeder Ausdruck aus ssub(A,C,B) eine Tautologie.

Lemma: Für einen Ausdruck A, eine Tautologie B und eine Kontradiktion C gelten

$$A \wedge B \equiv A$$
 und $A \vee C \equiv A$.

Normalformen I

Definition: Ein aussagenlogischer Ausdruck A ist in konjunktiver Normalform, falls A die Form

$$A = (A_1 \wedge A_2 \wedge \cdots \wedge A_m)$$

für ein $m \geq 1$ hat, wobei jeder der Ausdrücke A_i , $1 \leq i \leq m$, die Form

$$A_i = (A_{i,1} \vee A_{i,2} \vee \cdots \vee A_{i,n_i})$$

mit $n_i \geq 1$ hat, in der jeder Ausdruck $A_{i,j}$, $1 \leq i \leq m$, $1 \leq j \leq n_i$, ein Literal ist.

Normalformen II

Definition: Ein aussagenlogischer Ausdruck A ist in <u>disjunktiver</u> Normalform, falls A die Form

$$A = (A_1 \vee A_2 \vee \cdots \vee A_m)$$

für ein $m \geq 1$ hat, wobei jeder der Ausdrücke A_i , $1 \leq i \leq m$, die Form

$$A_i = (A_{i,1} \land A_{i,2} \land \dots \land A_{i,n_i})$$

mit $n_i \geq 1$ hat, in der jeder Ausdruck $A_{i,j}$, $1 \leq i \leq m$, $1 \leq j \leq n_i$, ein Literal ist.

Normalformen III

Satz: Zu jedem aussagenlogischen Ausdruck gibt es einen semantisch äquivalenten Ausdruck, bei dessen Konstruktion nur Negation, Konjunktion und Disjunktion (Alternative) benutzt werden.

Satz: Zu jedem aussagenlogischen Ausdruck A gibt es aussagenlogische Ausdrücke B in konjunktiver Normalform und C in disjunktiver Normalform, für die $A \equiv B$ und $A \equiv C$ gelten.

Folgerung: Zu jeder n-stelligen Booleschen Funktion f gibt es einen aussagenlogischen Ausdruck A mit $var(A) = \{p_1, p_2, \dots, p_n\}$ und $f = f_A$.

Normalformen IV

$$A = \neg(p_1 \to \neg(p_2 \to p_3))$$

disjunktive Normalform

$$M = \{(1,0,0), (1,0,1), (1,1,1),$$

$$m_{(1,0,0)} = (p_1 \land \neg p_2 \land \neg p_3)$$

$$m_{(1,0,1)} = (p_1 \land \neg p_2 \land p_3)$$

$$m_{(1,1,1)} = (p_1 \land p_2 \land p_3)$$

$$((p_1 \land \neg p_2 \land \neg p_3) \lor (p_1 \land \neg p_2 \land p_3) \mid ((p_1 \lor p_2 \lor p_3) \land (p_1 \lor p_2 \lor \neg p_3) \lor (p_1 \land p_2 \land p_3)) \mid \land (p_1 \lor \neg p_2 \lor p_3) \land (p_1 \lor \neg p_2 \lor \neg p_3) \land (p_1 \lor \neg p_3 \lor \neg p_3 \lor \neg p_3) \land (p_1 \lor \neg p_3 \lor \neg p_3 \lor \neg p_3) \land (p_1 \lor \neg p_3 \lor \neg p_3 \lor \neg p_3) \land (p_1 \lor \neg p_3 \lor \neg p_3 \lor \neg p_3) \land (p_1 \lor \neg p_3 \lor \neg p_3 \lor \neg p_3 \lor \neg p_3) \land (p_1 \lor \neg p_3 \lor \neg p_$$

konjunktive Normalform

$$M' = \{(0,0,0), (0,0,1), (0,1,0)\}\$$
$$(0,1,1), (1,1,0)\}$$

$$s_{(0,0,0)} = (p_1 \lor p_2 \lor p_3)$$

$$s_{(0,0,1)} = (p_1 \lor p_2 \lor \neg p_3)$$

$$s_{(0,1,0)} = (p_1 \vee \neg p_2 \vee p_3)$$

$$s_{(0,1,1)} = (p_1 \vee \neg p_2 \vee \neg p_3)$$

$$s_{(1,1,0)} = (\neg p_1 \lor \neg p_2 \lor p_3)$$

$$((p_1 \lor p_2 \lor p_3) \land (p_1 \lor p_2 \lor \neg p_3) \land (p_1 \lor \neg p_2 \lor p_3) \land (p_1 \lor \neg p_2 \lor \neg p_3) \land (\neg p_1 \lor \neg p_2 \lor p_3))$$

Entscheidungsprobleme

Probleme:

Ist ein gegebener aussagenlogischer Ausdruck erfüllbar?

Ist ein gegebener aussagenlogischer Ausdruck eine Tautologie?

Ist ein gegebener aussagenlogischer Ausdruck eine Kontradiktion?

Reduktionen:

Ein Ausdruck A ist genau dann eine Kontradiktion, wenn A nicht erfüllbar ist.

Ein Ausdruck A ist genau dann eine Tautologie, wenn $\neg A$ nicht erfüllbar ist.

Definitionsbasierter Algorithmus

Eingabe: Aussagenlogischer Ausdruck A mit n Variablen

$$m = 0; i = 0;$$

while
$$(m == 0 \&\& i < 2^n) \{m = w_{\alpha_i}(A); i = i + 1;\}$$

if (m == 0) Gib ,, A ist nicht erfüllbar" aus; else Gib ,, A ist erfüllbar" aus;

(dabei ist α_i die Belegung für die $\alpha_i(p_1)\alpha_i(p_2)\ldots\alpha_i(p_n)$ die Binärdarstellung von i ist)

Komplexität: exponentiell

Fakultät für Informatik Universität Magdeburg Jürgen Dassow

Klausel und Resolvente

Definition: Eine Klausel über $\{p_1, p_2, \dots, p_n\}$ ist eine Menge

$$K = \{p_{i_1}, p_{i_2}, \dots, p_{i_r}, \neg p_{j_1}, \neg p_{j_2}, \dots, \neg p_{i_s}\}$$

mit

$$\{p_{i_1}, p_{i_2}, \dots, p_{i_r}\} \subseteq \{p_1, \dots, p_n\} \text{ und } \{p_{j_1}, p_{j_2}, \dots, p_{j_s}\} \subseteq \{p_1, \dots, p_n\}.$$

Definition: K_1 , K_2 und R seien Klauseln. R heißt Resolvente von K_1 und K_2 , falls es eine Variable p derart gibt, dass

 $-p \in K_1$ und $\neg p \in K_2$ und

$$-R = (K_1 \setminus \{p\}) \cup (K_2 \setminus \{\neg p\})$$

gelten.

Logik

25

Fakultät für Informatik Universität Magdeburg Jürgen Dassow

Klauseln und Normalformen

Alternative
$$A=(p_{i_1}\vee p_{i_2}\vee\cdots\vee p_{i_r}\vee\neg p_{j_1}\vee\neg p_{j_2}\vee\cdots\vee\neg p_{i_s})$$
 entspricht "eineindeutig"

Klausel
$$K_A = \{p_{i_1}, p_{i_2}, \dots, p_{i_r}, \neg p_{j_1}, \neg p_{j_2}, \dots, \neg p_{i_s}\}$$

konjunktive Normalform $A = (A_1 \wedge A_2 \wedge \cdots \wedge A_r)$

entspricht "eineindeutig"

Menge von Klauseln $K = \{K_{A_1}, K_{A_2}, \dots, K_{A_r}\}$

Fakultät für Informatik Universität Magdeburg Jürgen Dassow

Resolutionshülle

Definition: Für eine Menge K von Klauseln setzen wir

$$\begin{array}{rcl} res(K) &=& K \cup \{R \mid R \text{ ist Resolvente zweier Klauseln aus } K\}\,, \\ res^0(K) &=& K\,, \\ res^{n+1}(K) &=& res(res^n(K)) \text{ für } n \geq 0\,, \\ res^*(K) &=& \bigcup_{i \geq 0} res^i(K)\,. \end{array}$$

Satz: Sei K eine endliche Menge von Klauseln. Dann gibt es eine natürliche Zahl $k \geq 0$ derart, dass

$$res^{k+n}(K) = res^k(K)$$
 für $n \ge 0$ und $res^*(K) = res^k(K)$

gelten.

Aussagen zur Resolution

Lemma: Es sei R die Resolvente von $K' \in K$ und $K'' \in K$. Dann ist der zur Klauselmenge $K = \{K', K''\}$ gehörende aussagenlogische Ausdruck $A = A_K = (D_{K'} \wedge D_{K''})$ semantisch äquivalent zu dem zur Klauselmenge $L = \{K', K'', R\}$ gehörenden Ausdruck $B = A_L = (D_{K'} \wedge D_{K''} \wedge D_R)$.

Lemma: Für eine endliche Menge K von nichtleeren Klauseln sind die zu K, $res^t(K)$ für $t \geq 0$ und $res^*(K)$ gehörenden Ausdrücke semantisch äquivalent zueinander.

Satz: Der zu einer endlichen Klauselmenge K von nichtleeren Klauseln gehörende Ausdruck ist genau dann unerfüllbar, wenn $\emptyset \in res^*(K)$ gilt.

Resolutionsalgorithmus

Eingabe: Klauselmenge K eines aussagenlogischen Ausdrucks A (oder konjunktive Normalform zu A, aus der dann K gewonnen wird)

$$n=1;\ R[0]=K;\ R[1]=res(K);$$
 while $(\emptyset\notin R[n]\ \&\&\ R[n]\ne R[n-1])\ \{n=n+1;\ R[n]=res(R[n-1]);\}$ if $(\emptyset\in R[n])$ Gib ,,A ist unerfüllbar" aus; else Gib ,,A ist erfüllbar" aus;

Komplexität: exponentiell

Hornausdruck

Definition:

Ein <u>Hornausdruck</u> ist ein aussagenlogischer Ausdruck in konjunktiver Normalform $(A_1 \wedge A_2 \wedge \cdots \wedge A_m)$, bei dem jede Alternative A_i , $1 \leq i \leq m$, höchstens eine nichtnegierte Variable enthält.

Satz:

Der Algorithmus von Horn für das Erfüllbarkeitsproblem für Hornausdrücke ist korrekt.

Algorithmus von Horn

Eingabe: Hornausdruck $A = (A_1 \land A_2 \land \cdots \land A_m)$

$$\begin{split} M &= \emptyset; \ b = 1; \\ \text{for } (i = 1; \ i \leq m; \ i + +) \\ & \text{ if } (A_i = p) \ \{ M = M \cup \{ p \}; \ b = 0; \} \end{split}$$
 while $(b == 0)$ $\{ b = 1; \\ \text{ for } (i = 1; \ i \leq m; \ i + +) \\ & \text{ if } (A == (p \vee \neg q_1 \vee \neg q_2 \vee \cdots \vee \neg q_k) \\ & \& \ p \notin M \ \& \& \ q_j \in M \ \text{für } 1 \leq j \leq k) \\ & \{ M = M \cup \{ p \}; \ b = 0; \} \ \} \end{split}$

 $\begin{array}{l} \texttt{for } (i=1;\,i< m;\,i++)\\ \{\,\,\texttt{if } (A_i==(\neg q_1 \vee \neg q_2 \vee \cdots \vee \neg q_k)\\ \&\&\,\,q_j \in M\,\,\texttt{für}\,\,1 \leq j \leq k)\\ a=0;\} \end{array}$

if (a == 0) Gib ,,A ist unerfüllbar" aus; else Gib ,,A ist erfüllbar" aus;

Komplexität: polynomiell (Polynom vom Grad 3)