Perfect Secrurity

Definition: The ciphers of ${\cal S}$ provide perfect secrurity with respect to ${\cal T}$ and ${\cal K},$ if

$$p_k(t) = p(t)$$

holds for every cipher text $k \in \mathcal{K}$ and every plain text $t \in \mathcal{T}$.

Theorem: Let S be a set of keys with $\#(T) = \#(\mathcal{K}) = \#(S)$, where all keys have the same probability and which contains, for any plain text t and any cipher text k, exactly one transformation τ with $\tau(t) = k$. Then S provides perfect secrurity with respect to T und \mathcal{K} .

Shift Register

Definition:

i) A shift register of length m is a sequence of m flip-flops k_1, k_2, \ldots, k_m ; each contains in any moment t of time an element $k_i(t) \in \{0, 1\}$; with each flip-flop k_i , a constant $c_i \in \{0, 1\}$ and an initial value $x_i \in \{0, 1\}$ is associated $(k_i(0) = x_i)$.

ii) The configuration of a shift register changes in every step according to the conditions:

$$-k_1(t+1) = c_1k_1(t) \oplus c_2k_2(t) \oplus \ldots \oplus c_mk_m(t) , -k_i(t+1) = k_{i-1}(t) \text{ für } 2 \le i \le m, \ t \ge 0 .$$

iii) The output of the shift register is the sequence $k_m(0)k_m(1)k_m(2)\dots$