
Chapter 1

Membrane Systems

1.1 Further Basics

In this section we introduce two further types of grammars. The common feature is that
they use only context-free rules, however, by some restrictions in the application of rules a
larger generative power than that of context-free grammars is obtained. These grammars
will be used in the sequel to discuss the power of membrane systems which are the subject
of this chapter.

We start with the definition of a matrix grammar1. Essentially instead of context-free
rules finite sequences of context-free rules are considered and if one applies the first rule
of such a sequence one has to apply the further rules of this sequence in the given order.

Definition 1.1 i) A matrix grammar is a quintuple G = (N, T,M, S, F ) where

• N , T and S are specified as in a context-free grammar,

• M = {m1,m2, . . . , mn} is a finite set of finite sequence of context-free rules, i.e.,
for 1 ≤ i ≤ n,

mi = (Ai,1 → wi,1, Ai,2 → wi,2, . . . , Ai,ri
→ wi,ri

)

for some ri ≥ 1, Ai,j ∈ N , wi,j ∈ (N ∪ T )∗, 1 ≤ j ≤ ri,

• F is a subset of the rules occurring in the sequences mi, 1 ≤ i ≤ n.

ii) For a matrix m = (A1 → w1, A2 → w2, . . . , Ar → wr) ∈ M , we say that x derives
y by m, written as x =⇒m y if there exist words x1, x2, . . . xr+1 such that the following
conditions hold:

• x = x1, y = xr+1,

• for 0 ≤ i ≤ r − 1, xi = x′iAix
′′
i and xi+1 = x′iwix

′′
i or Ai does not occur in xi,

xi+1 = xi and Ai → wi ∈ F .

1To be precise, we introduce matrix grammar with appearance checking and with erasing rules. Be-
cause the other more restricted types of matrix grammars will not be used we only use the term matrix
grammar.

-1



iii) The language L(G) generated by G consists of all words z ∈ T ∗ which have a derivation

S =⇒mi1
w1 =⇒mi2

w2 =⇒mi3
. . . =⇒mit

= wt = z

where t ≥ 1 and mij ∈ M for 1 ≤ j ≤ t.

The sequences m ∈ M are called matrices. By definition the rules of a matrix have
to be applied in the given order and all matrices of a matrix have to be applied where
applications means a usual application if the left hand side occurs in the sentential form or
no change if the left hand side does not occur in the sentential form and the rule belongs
to F .

By L(MAT ) we denote the family of all languages which can be generated by matrix
grammars.

We give two examples.

Example 1.2 Let G1 = ({S, A,B}, {a, b, c}, {m1,m2,m3}, S, ∅) be a matrix grammar
with

m1 = (S → AB), m2 = (A → aAb,B → Bc), and m3 = (A → ab,B → c).

Then any derivation has the form

S =⇒m1 AB =⇒m2 aAbBc =⇒m2 a2Ab2Bc2 =⇒m2 a3Ab3Bc3 =⇒m2 . . .

=⇒m2 an−1Abn−1Bcn−1 =⇒m3 anbncn,

which yields that
L(G1) = {anbncn | n ≥ 1}.

Example 1.3 We consider the matrix grammar

G2 = ({S, A, B, X, Y, Z, #}, {a}, {m1,m2, . . . , m8}, S, {A → #, B → #})

where

m1 = (S → XA), m2 = (X → X,A → BB),
m3 = (X → Y, A → #), m4 = (Y → Y,B → A),
m5 = (Y → X,B → #), m6 = (Y → Z,B → #),
m7 = (Z → Z,A → a), m8 = (Z → λ,A → a).

Let us assume, that we have a sentential form XAn for some n ≥ 1; note that by the
application of the matrix m1 (which has been used in the first step) we obtain such a word
with n = 1. We cannot apply the matrix m3 since it introduces the nonterminal # which
cannot be replaced, i.e., the derivation cannot be terminated. Hence the only applicable
rule is m2 which gives XAn1BBAn2 with n1+n2 = n−1. Again, m2 is the only applicable
if n− 1 > 1; moreover, this situation holds as long as a letter A is present. Thus we get
after n applications of m2 the sentential form XB2n. Now the only applicable matrix is
m3 where A → # cannot be applied which is allowed by A → # ∈ F . Now we have to
proceed with 2n application of m4 which yields Y A2n. Now we have two possibilities; we
use m5 or m6. In the former case we obtain the sentential form XA2n which has the same
form as our starting sentential form; only the number of occurrences of A is doubled. In
the latter case we have to apply 2n − 1 times the matrix m7 and once m8 which results

0



in a2n (note that m8 cannot be applied earlier since we then obtain a sentential with no
occurrence of X,Y, Z, i.e., the derivation is blocked). Thus we double the number of A’s
or we terminate. Therefore

L(G2) = {a2n | n ≥ 1}.

Obviously, if all matrices have length 1, i.e., they consist of one rule only, then the
application of the matrix coincides with the application of its rule. Thus such matrix
grammars generate only context-free languages and all context-free languages can be
generated. The example shows that also non-context-free languages can be generated by
matrix grammars. Without proof we give that the generative power of matrix grammars
equals the power of arbitrary phrase structure grammars.

Theorem 1.4 L(MAT ) = L(RE). 2

We now present a normal form for matrix grammars.

Definition 1.5 A matrix grammar G = (N, T,M, S, F ) is in normal form if the following
conditions hold:

• N = N1 ∪N2 ∪ {S, Z, #}, S, Z, # /∈ N1 ∪N2, N1 ∩N2 = ∅

• any matrix of M has one of the following forms
— (S → XA) with X ∈ N1, A ∈ N2,
— (X → Y, A → w) with X, Y ∈ N1, A ∈ N2, w ∈ (N2 ∪ T )∗,
— (X → Y, A → #) with X ∈ N1, Y ∈ N1 ∪ {Z}, A ∈ N2,
— (Z → λ),

• there is only one matrix of the form (S → XA) in M ,

• F consists of all rules of the form A → # with A ∈ N2.

Moreover, in any derivation, the matrix (Z → λ) is only applied to a sentential form
w1Zw2 with certain w1w2 ∈ T ∗.

The following theorem shows that the naming normal form is used correctly.

Theorem 1.6 For any recursively enumerable language L, there is a matrix grammar G
in normal form such that L(G) = L.

Proof. We first proof that the required special forms of matrices are sufficient. Let
L be a recursively enumerable language. By Theorem 1.4, there is a matrix grammar
G′ = (N, T, M, S ′, F ) such that L(G′) = L. We assume that

N = {A1, A2, . . . , At},
M = {m1,m2, . . .mn},
mi = (Ai,1 → wi,1, Ai,2 → wi,2, . . . , Ai,ri

→ wi,ri
) for 1 ≤ i ≤ n.

1



We construct the matrix grammar G in normal form by the settings

N1 = {[i, j] | 1 ≤ i ≤ n, 1 ≤ j ≤ ri} ∪ {[k] | 1 ≤ k ≤ t,

N2 = N,

new letters S, Z, #,

(1) (S → [i, 1]S ′) for 1 ≤ i ≤ n,

(2) ([i, j] → [i, j + 1], Ai,j → wi,j) for 1 ≤ i ≤ n, 1 ≤ j < ri,

(3) ([i, j] → [i, j + 1], Ai,j → #) for 1 ≤ n, 1 ≤ j < ri, Ai,j → wi,j ∈ F,

(4) ([i, ri] → [i′, 1], Ai,ri
→ wi,ri

) for 1 ≤ i ≤ n, 1 ≤ i′ < n,

(5) ([i, ri] → [i′, 1], Ai,ri
→ #) for 1 ≤ i ≤ n, 1 ≤ i′ < n, Ai,ri

→ wi,ri
∈ F,

(6) ([i, ri] → [1], Ai,ri
→ wi,ri

) for 1 ≤ i ≤ n,

(7) ([i, ri] → [1], Ai,ri
→ #) for 1 ≤ i ≤ n, Ai,ri

→ wi,ri
∈ F,

(8) ([i] → [i + 1], Ai → #) for 1 ≤ i ≤ t− 1,

(9) ([t] → Z,At → #),

(10) (Z → λ).

We have L(G′) = L(G) by the following reasons. We start with an application of a matrix
of type (1), which says that the application of the i-th matrix is started. The simulation
is performed by applying in succession the rules of type (2) or (3) with left hand sides
[i, 1], [i, 2], . . . , [i, ri − 1] in their first rules and finishing the simulation with rules of type
(4), (5), (6) or (7) with left hand side [i, ri] in its first rule. The matrices of types (3) and
(5) can only be applied if the nonterminal Ai,j and Ai,ri

does not occur in the sentential
form since otherwise the nonterminal # is introduced which cannot be changed (there
are no rules with left hand side #), i.e., we cannot derive a terminal word. After the
simulation of a complete matrix of G′, we start another simulation of a matrix if we
applied a rule of type (4) or (5) and we start the applications of type (8) and (9) if we
applied matrices of type (6) or (7). By the matrices of type (8) and (9) we check that no
nonterminal is present in the sentential form (otherwise a # is introduced). Finally, we
cancel the first letter Z. Thus any derivation consists of simulations of the application of
matrices in G followed by a check that the word is terminal.

It remains to show that one rule of the form (S → XA) is sufficient. In order to
prove this we change G′ to G′′ = (N ∪ {S ′′}, T, M ∪ {(S ′′ → S ′), S ′′, F ). It is obvious
that L(G′) = L(G′′) since any derivation has to start with S ′′ =⇒ S ′. Moreover, there
is a unique matrix (S ′′ → S ′) of G′′ which has to be used in the first step. Such the
construction of G as above starting from G′′ requires only the matrix (S → [i, 1]S ′′)
where i refers to (S ′′ → S ′). 2

The second concept is that of grammar systems2 The basic idea can be illustrated as
follows. Some (context-free) grammars are sitting around a table and a word is placed on
the table. Now a grammar G can take the word and derive it as long productions of the
grammar G are applicable. If no rule can be applied by G, then G puts the newly derived

2To be precise we consider here cooperating distributed grammar systems with terminating derivation
mode t; however, since other types of grammar systems are not used, we use the term grammar system
only.

2



word back to the table. Obviously, this process can be iterated. We have a cooperation
of the grammars since rules of another grammar cannot be used if a grammar works.

We now give the formal definition.

Definition 1.7 i) A grammar system with n components is an (n + 3)-tuple

G = (N, T, P1, P2, . . . , Pn, S)

where

• N , T , S are specified as in a context-free grammar,

• P1, P2, . . . , Pn are finite subsets of N×(N ∪T )∗, i.e., Pi is a finite set of context-free
rules for 1 ≤ i ≤ n.

ii) We say that x derives y by the set Pi, 1 ≤ i ≤ n, written as x =⇒t
Pi

y if x =⇒∗
Pi

y,
i.e., y can be obtained from x by a derivation which only uses rules from Pi, and no rule
of Pi can be applied to y.

iii) The language L(G) generated by the grammar system G consists of all word z ∈ T ∗

which can be generated by a derivation of the form

S =⇒t
Pi1

w1 =⇒t
Pi2

w2 =⇒t
Pi3

. . . =⇒t
Pis

ws = z

for some t ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ s.

The sets P1, P2, . . . , Pn are called the components of the grammar system.
By Ln(CF ) we denote the set of languages which can be generated by grammar systems

with n components.
We now present two examples which generate the same languages as the matrix gram-

mars considered in Examples 1.2 and 1.3.

Example 1.8 Let G′
1 = ({S, A, B, A′, B′}, {a, b, c}, P1, P2, P3, S) be a grammar system

with the three components

P1 = {S → AB, A → aA′b, B → B′c}, P2 = {A′ → A,B′ → B}, P3 = {A → λ,B → λ}.

Obviously, any derivation in the grammar system G′
1 has the form

S =⇒t
P1

aA′bB′c =⇒t
P2

aAbBc =⇒t
P1

a2A′b2B′c2 =⇒t
P2

a2Ab2Bc2 =⇒t
P1

. . .

=⇒P2 anAbnBcn =⇒P3 anbncn,

which gives
L(G′

1 = {anbncn | n ≥ 1}.

Example 1.9 We consider the grammar system G′
2 = ({S, S ′}, {a}, P1, P2, P3, S) with

the three components

P1 = {S → S ′S ′}, P2 = {S ′ → S}, P3 = {S → a}.

3



Then any derivation is of the form

S =⇒t
P1

S ′S ′ =⇒t
P2

SS =⇒t
P1

(S ′)4 =⇒t
P2

S4 =⇒t
P1

(S ′)8 =⇒t
P2

S8 . . .

=⇒t
P2

S2t

=⇒t
P3

a2n

and, consequently,
L(G′

2) = {a2n | n ≥ 0}.

It is clear that a grammar system with one component is a context-free grammar.
Therefore L1(CF ) = L(CF ). However, if we use three components, then non-context-free
languages can be generated. The following theorem says that we need three components
in order to generate non-context-free languages and that three components are sufficient
to generate languages which can be obtained by an arbitrary number of components. We
omit the proof which needs some knowledge on further closure properties of L(CF ) and
on extended tabled Lindenmayer systems.

Theorem 1.10 i) L(CF ) = L1(CF ) = L2(CF ).
ii) For any n ≥ 3, Ln(CF ) = L3(CF ). 2

Let L be a language. Then we set

N(L) = {n | n = |w| for some w ∈ L},

i.e., N(L) is the set of all lengths of words in L.
Let X be a set of grammars. Then we set

N(X) = {N(L) | L ∈ L(X)}.

Without proof we mention the following statements.

Theorem 1.11 i) N(REG) = N(CF ) ⊂ N(CS) ⊂ N(RE).
ii) A set M of natural numbers belongs to N(CF ) if and only if there are numbers

r, s, p, q1, q2, . . . qr, p1, p2, . . . , ps such that r ≥ 0, s ≥ 0, p ≥ 1, q1 < q2 < . . . < qr < p1 <
p2 < . . . < ps and

M = {q1, q2, . . . , qr} ∪
s⋃

i=1

{pi + np | n ∈ N0}.

In a subset M of a set U , any element of M occurs once, however, in many applications
an element can occur more often. Thus we associate a number of occurrences with any
element in a set. Formally, this leads to the concept of a multiset.

A multiset M over U is a mapping M of U into the set N0 ∪ {∞} of non-negative
integers and a symbol ∞ representing infinity. M(x) is called the multiplicity of x.

A multiset M is called finite iff there is a finite subset U ′ of U such that M(x) = 0 for
x /∈ U and M(x) 6= ∞ for x ∈ U . Then its cardinality is the sum of the multiplicities of
the elements of U .

The cardinality and the length of a finite multiset M are defined as #(M) =
∑

x∈U M(x).
Let M be a finite multiset over a finite set U . Then we can build a word wM ∈ U∗

such that #x(wM) = M(x) for all x ∈ U . Obviously, wM is uniquely determined up to the

4



order of the letters. For example, if M over {a, b, c, d} is given by M(a) = 2, M(b) = 3,
M(c) = 1, and M(d) = 0, then we can choose any of the words a2b3c, abcabb, cbabab, and
abcbab as wM .

Conversely, with any word w over a U , we can associate a multiset M by setting
M(x) = #x(w). Clearly, Mw = w holds for this situation.

Thus, in the sequel, we shall identify a finite multiset M with an associated word wM .

Obviously, #(M) = |wm|.

1.2 Basic Type of Membrane Systems and its Power

The idea of membrane systems is to model a biological cell as a computing device. A
cell is considered as a membrane which contains further membranes which can contain
membranes again. For instance the kernel of a cell gives a membrane contained in the
skin membrane of the cell. Moreover, there is a change of the contents of each of the
cells according to bio-chemical reactions inside a membrane, and there is an exchange of
molecules through the membranes. If one considers the state of the cell, i.e., the molecules
inside the membranes, as a configuration, then the above mentioned reactions lead to a
change of the configuration. Therefore we have something which looks as a computation.
However, inside of each membrane we only have a finite multiset of objects; therefore the
computation is not done via words, it is done via multisets.

In Figure 1 we give a cell by the outer skin membrane 1 containing two membranes 2
and 3 and the membrane 2 contains a further membrane 4. Moreover, the content of the
cell itself is the multiset with the associated word abb, the contents of the three membranes
2, 3, and 4 inside the cell are the multisets/words bc, aac, and abc respectively.

abb

bc

aacabc

1

2

3

4

Figure 1.1: A membrane structure

The first problem is to describe the membrane structure. This can be done by a tree,
where the outer skin membrane is the root and x is a son of y if and only if the membrane

5



y contains the membrane x. The membrane structure of the cell given in Figure 1.1 is
then represented by

1

2

¢¢¢¢¢¢¢
3

=======

4

A further possibility to give a membrane structure is a correct sequence of indexed
brackets where the index refers to the membrane. The outer membrane is represented by
[1]1. If one has already a membrane structure where [i is followed by ]i, i.e., the sequence of
brackets has the form w[i]iw

′, and the i-th membrane contains the membranes j1, j2, . . . , js,
then we get a bracket word

w[i[j1 ]j1 [j2 ]j2 . . . [js ]js ]i .

The structure given in Figure 1.1 is represented by [1[2[4]4]2[3]3]1.
A membrane is called simple if there is no membrane inside of it. In terms of trees

which describe a membrane structure, the leaves correspond to simple membranes.

We also have to clarify the concept of a rule in a membrane system because we cannot
only change a letter or a multiset of letters, i.e., a word, we can also move letters or
multisets of letters through membranes. Obviously, a letter is kept in a membrane, or it
can go out of the membrane, or it can move into a membrane which is inside the given
membrane. Therefore we define the set Tar consisting of here, out and inj where j refers
to the j-th membrane. Thus we formally define a rule in a membrane system as a pair

(x1x2 . . . xn, (y1, t1)(y2, t2) . . . (ym, tm))

where xi and yj are letters for 1 ≤ i ≤ n and 1 ≤ j ≤ m, and tj ∈ Tar for 1 ≤ j ≤ m. The
application of this rule to the multiset x1x2 . . . xn in membrane k is performed as follows:
the multiset x1x2 . . . xn is taken away from the multiset of membrane j, the letters yq,
1 ≤ q ≤ m,
— are added to the multiset in membrane j, if tq = here,
— are added to the multiset in membrane k, if tq = out and membrane k contains mem-
brane j,
— are given to the environment (and are lost) if tq = out and membrane j is the outer
membrane,
— are added to the multiset in membrane p, if tq = inp and membrane j contains mem-
brane p. We note that, obviously, given a membrane j, the targets of the rules applicable
to multisets in membrane j – besides here and out – can only be numbers of membranes
which are contained in membrane j, i.e., which are sons of j in the tree describing the
membrane structure. Moreover, out defines a unique membrane or the environment to
which the letters have to go.

Again, we write x1x2 . . . xn → (y1, t1)(y2, t2) . . . (ym, tm) for a rule.
In order to simplify the notation, we write a instead of (a, here).
Thus we know, how to apply a rule. But in contrast to sequential grammars as

context-free grammar or other phrase structure grammars, by the biological motivation,

6



the rules have to be applied in parallel since some chemical reactions occur at the same
moment. But we have a difference to L systems, too. In L systems, the rules are applied
to letters – perhaps depending on the context – and thus the parallelism requires that
to any object a rule has to be applied. In membrane systems, the rules are applied to
multisets and thus it is possible that some objects remain to which no rule can be applied.
For instance, let p1 = ab → a(b, out)(a, in3), p2 = a → bb, p3 = bb → (a, out)(a, in2) be
the rules associated with the first membrane in the membrane structure given in Figure
1.1, where the membrane 1 contains the multiset represented by the word abb. If we apply
the rule p1 then we take from this multiset one occurrence of a and one occurrence of b
such that one occurrence of b remains to which no rule is applicable. On the other hand,
if we apply the second rule p2, then two occurrences of b are not involved, and we can
apply p3 parallel to p2. We require that we apply all rules in such a way that no rule is
applicable to the remaining multiset. This is formally given in the following definition.

Definition 1.12 Let a multiset M and a set P = {w1 → v1, w2 → v2, . . . , wm → vm}
of rules be given. We say that P is applied in a maximal parallel way iff the following
conditions are satisfied:
– M has a representation wM = wi1wi2 . . . wirw

′,
– all rules wik → vik , 1 ≤ k ≤ r, are applied,
– no rule of P is applicable to w′.

Note that it is allowed that there is another representation wj1wj2 . . . wjsw
′′ of M with

s 6= r and/or ik 6= jk and/or w′ 6= w′′ where we have to apply all rules wjk
→ vjk

,
1 ≤ k ≤ s, and no rule of P is applicable to w′′. Thus there is some nondeterminism in
the definition of a maximal parallel derivation.

Before giving the formal definition of a membrane system we shortly discuss the prob-
lem of defining the generated language. Obviously, since the membranes contain multisets,
only multisets can be generated. In a (context-free) grammar a derivation is finished iff
the generated word contains only terminals, or in other words, no rule can be applied to
the generated sentential forms. Therefore it is of interest to consider such multisets which
are in the system if no rule is applicable. There are at least two possibilities for the choice
of the generated multiset: take the union of all multisets present in the membranes or
choose a special membrane and take the multiset in that membrane. We shall follow the
second idea. Moreover, we shall not consider multisets, which count how often a letter
occurs; we shall consider only the number of letters occurring in the multiset, that is the
length of the word describing the multiset.

We now give the formal definition of a membrane system.

Definition 1.13 i) A membrane system with m membranes is a (2m + 3)-tuple

Γ = (V, µ, w1, w2, . . . wm, R1, R2, . . . Rm, i)

where

• V is a finite alphabet (of objects occurring in the membranes),

• µ is a membrane structure (of m membranes),

7



• for 1 ≤ j ≤ m, wj is a word over V (giving the initial content of membrane j),

• for 1 ≤ j ≤ m, Rj is a finite set of rules which can be applied to words in mem-
brane j,

• i is a natural number such that 1 ≤ i ≤ m and the membrane i is a simple membrane
(the output membrane).

ii) A configuration of Γ is an m-tuple of multisets/words.
For two configurations C = (u1, u2, . . . , um) and C ′ = (u′1, u

′
2, . . . , u

′
m), we say that C

is transformed to C ′ by Γ, written as C ` C ′ if and only if C ′ is obtained from C by a
maximal parallel application of rules of Ri to ui for all i, 1 ≤ i ≤ m, i.e., no rule of Ri

can be applied to the multiset which remains after subtracting all sets to which rules are
applied from ui.

iii) A configuration C = (u1, u2, . . . , um) is called halting iff no rule of Ri is applicable
to ui for 1 ≤ i ≤ m.

iv) The language L(Γ) generated by a membrane system Γ is the set of all numbers n
such that there is a halting configuration C = (u1, u2, . . . , um) of Γ with |ui| = n.

We give two examples.

Example 1.14 We consider the membrane system

Γ1 = ({a, b, c}, [1[2]2]1, a2, λ, R1, ∅, 2)

with
R1 = {a → (a, here)(b, in2)(c, in2)

2, a2 → (a, out)2}.
Since, initially, we have two letters a in the membrane 1, we have two possibilities: we
apply two times the rule a → (a, here)(b, in2)(c, in2)

2 or we apply once the rule a2 →
(a, out)2. In the latter case both letters a are send in the environment and are lost
such that the derivation stops since no further letters are in membrane 1. In the former
case, two letters a remain in membrane 1 and two letter b and four letters c are send
inside membrane 2. If we apply n times a → (a, here)(b, in2)(c, in2)

2 and finish by one
application of a2 → (a, out)2, then we have finally 2n letters b and 4n letters c in membrane
2. Hence

L(Γ1) = {6n | n ≥ 0}.
Example 1.15 Let

Γ2 = ({A,B, D, E,X, Y, Z, a, #}, [1[2]2]1, XADE, λ, R1, ∅, 2)

be a membrane systems with two membranes where

R1 = {XADE → XBBDE, XE → Y E, AD → #, # → #,

Y BDE → Y ADE, Y D → Y D, BE → #,

Y D → Z, ZA → Z(a, in2) }
We note that any application of a rule requires an occurrence of X or Y or Z. the initial
configuration contains one such letter, namely X, and each rule produces at most one

8



such letter. Therefore only one such letter occurs in any configuration (and as we see
below, hence we can only apply one rule of R1 in each step). Furthermore, if the letter #
is introduced by some rule, then we can apply the rule # → # at every moment and thus
the system cannot reach a halting configuration, i.e., no word of L(Γ2) can be generated.

Let a configuration (XAnDE, λ) with n ≥ 1 be given: note that the initial configu-
ration is given by n = 1. Then we cannot apply XE → Y E since we also have to apply
AD → # by the maximal parallelism, which introduces #. This holds as long A is present
in the first component of the configuration. Hence we get

(XAnDE, λ) ` (XAn−1B2DE, λ) ` (XAn−2B4DE, λ) ` . . . ` (XB2nDE, λ).

Now we can use XE → Y E (and only this rule is applicable) since it cannot be accompa-
nied by DA → #. Thus we have (Y B2nDE, λ). By arguments as above we have to replace
all occurrences of B by A using the rule Y BDE → Y ADE. This yields (Y A2nDE, λ).
Now we have two cases for the continuation.

Case 1. We apply Y D → XD. Then we obtain the configuration (XA2nDE, λ) which
has the form as the configuration from which we started and the process of doubling the
A’s can be iterated.

Case 2. We apply Y D → Z. We get (ZA2nE, λ). In this configuration only ZA →
Z(a, in2) is applicable. Thus we obtain

(ZA2nE, λ) ` (ZA2n−1E, a) ` (ZA2n−2E, a2) ` . . . ` (ZE, a2n).

The last configuration is a halting one and therefore a2n belongs to L(Γ2). Therefore

L(Γ2) = {2n | n ≥ 1}.

We ask the reader to note that the membrane systems Γ2 works as the matrix grammar
G2. In both cases the introduction of # leads to a non-terminating derivation or only to
non-halting configurations, and it is necessary to replace all A’s or all B’s, before X can
be changed to Y or Y to X or Z, respectively.

A letter c ∈ V is called a catalyst iff all rules where c occurs have the form ca → cw
with a ∈ V and w ∈ (V ×Tar)∗, i.e., the catalyst is not changed by the reaction, however,
it is necessary that a can perform the change to w.

We say that a rule u → w with w ∈ (V × Tar)∗ is called
– non-cooperating iff u ∈ V ,
– cooperating iff |u| ≥ 2,
– catalytic iff u = ca and w = cw′ for some catalyst c, some a ∈ V and some w′ ∈
(V × Tar)∗.
The notions non-cooperating and cooperating correspond to context-free and monotone
in usual grammars. However since in a membrane system the words are interpreted
as multisets we have no context in membrane systems and therefore we have only a
cooperation between the letters of a multiset if the multiset is replaced.

We say that a membrane system is
– non-cooperating if all its rules are non-cooperating,

9



– catalytic if all its rules are non-cooperating or catalytic, and
– catalytic if it contains at least one rule which is cooperating and not catalytic.

By Ln(P, nco), Ln(P, cat), and Ln(P, coo) we denote the families of languages which
can be generated by non-cooperating, catalytic, and cooperating membrane systems with
at most n membranes, respectively. For X ∈ {nco, cat, coo},

L∗(P, X) =
⋃

n≥1

Ln(P,X).

By definition, for X ∈ {nco, cat, coo}, we have

L1(P, X) ⊆ L2(P, X) ⊆ L3(P,X) ⊆ . . . ⊆ Ln(P,X) ⊆ . . . ⊆ L∗(P, X). (1.1)

We first prove that the hierarchies given in (1.1) is finite for all X under consideration
and has at most two levels.

Lemma 1.16 For X ∈ {nco, cat, coo} and n ≥ 2,

L1(P,X) ⊆ L2(P, X) = Ln(P, X) = L∗(P, X).

Proof. Obviously, by (1.1) it is sufficient to prove that L∗(P,X) ⊆ L2(P, X).
The idea of the proof consist in an indexing of letters in such a way that the index

gives the membrane in which the letter is. Thus we set

V ′ = {aj | a ∈ V, 1 ≤ j ≤ m, j 6= i}
and define for 1 ≤ j ≤ m, j 6= i, the morphisms hj : V → V ′ by h(a) = aj.

Let L ∈ L∗(P,X). Then L = L(Γ) for some membrane system Γ. Let

Γ = (V, µ, w1, w2, . . . , wm, R1, R2, . . . , Rm, i)

with m ≥ 3 (if m ≤ 2, then L ∈ L2(P,X) by definition). We construct the membrane
system

Γ′ = (V ′ ∪ V, [1[i]i]1, w
′
1, wi, R

′
1, R

′
i, i)

with
w′

1 = h1(w1)h2(w2) . . . hi−1(wi−1)hi+1(wi+1)hi+2(wi+2) . . . hm(wm)

and R′
1 and R′

i consisting of all rules which are constructed in the following way:

• If u → (b1, t1)(b2, t2) . . . (bs, ts) ∈ Rk with 1 ≤ k ≤ m, k 6= i, then hk(u) →
c1c2 . . . cs ∈ R′

1 where
– cr = ((br)k, here) if tr = here
– cr = ((br)p, here) if tr = inp and p 6= i,
– cr = (br, ini) if tr = ini,
– cr = ((br)l, here) if tr = out and l is the unique membrane which contains mem-
brane k in µ.

• If u → (b1, t1)(b2, t2) . . . (bs, ts) ∈ Ri with 1 ≤ k ≤ m, k 6= i, then hk(u) →
c1c2 . . . cs ∈ R′

i where
– cr = (br, here) if tr = here
– cr = ((br)l′ , out) if tr = out and l′ is the unique membrane which contains mem-
brane i in µ.

10



By these definitions,
(v1, v2, . . . , vm) ` (v′1, v

′
2, . . . , v

′
m)

in Γ if and only if

(h1(v1) . . . hi−1(vi−1)hi+1(vi+1) . . . hm(vm), vi) ` (h1(v
′
1) . . . hi−1(v

′
i−1)hi+1(v

′
i+1) . . . hm(v′m), v′i)

in Γ′. Moreover, we have that (v1, v2, . . . , vm) is a halting configuration of Γ if and only if
(h1(v1)h2(v2) . . . hi−1(vi−1)hi+1(vi+1) . . . hm(vm), vi) is a halting configuration of Γ′. There-
fore the membrane i contains the same multisets if a halting configuration is obtained.
Thus L(Γ) = L(Γ′). This implies L = L(Γ′) ∈ L2(P, X). 2

We now prove that Lemma 1.16 can be improved for nco and coo to n ≥ 1. Moreover,
we characterize L∗(P, nco) and L∗(P, coo).

Theorem 1.17 For all n ≥ 1, L1(P, nco) = Ln(P, nco) = L∗(P, nco) = N(CF ).

Proof. By (1.1) and Lemma 1.16, it is sufficient to prove that N(CF ) ⊆ L1(P, nco) and
L2(P, nco) ⊆ N(CF ).

Let L ∈ N(CF ). Then there is a context-free language L′ such that L = N(L′).
Let G be a context-free grammar generating L′. We construct the membran system
Γ = (N∪T, [1]1, S, P, 1). Note that the rules of P in Γ are a short writing of rules where the
target is here in all cases. It is obvious that a derivation S =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wn

in G corresponds to (S) ` (w1) ` (w2) ` . . . ` (wn) in Γ (any configuration has only one
component). Moreover, z ∈ L(G) iff z ∈ T ∗ iff no rule is applicable in G iff (z) is a halting
configuration. Hence L(Γ) = N(L(G)) = N(L′) = N . This proves N(CF ) ⊆ L1(P, nco).

Let L = L(Γ) for some membrane system with 2 membranes, i.e.,

Γ = (V, [1[2]2]1, w1, w2, R1, R2, 2).

For i ∈ {1, 2}, let Fi be the set of all letters a ∈ V such that there is no rule with left-hand
side a in Ri. Without loss of generality we assume that w1 contains no letter of F1 since
such letters cannot be changed by Γ, and therefore they are superfluous for L(Γ). We set

Vi = {ai | a ∈ V } and V ′
i = {a′i | a ∈ V },

the define the homomorphisms

hi : V → V ′
i , g1 : V ×{here, out, in2} → F2∪V ′

1∪V ′
2 and g2 : V ×{here, out} → F2∪V ′

1∪V ′
2

by

hi(a) = a′i,

g1((b, here)) =

{
λ if b ∈ F1

b′1 otherwise,

g1((b, out) = λ,

g1((b, in2)) =

{
b if b ∈ F2

b′2 otherwise,

11



g2((b, here)) =

{
b if b ∈ F2

b′2 otherwise,

g2((b, here)) =

{
λ if b ∈ F1

b′1 otherwise,

and the grammar system G = (N, V \ F2, P1, P2, S) with two components by

N = V1 ∪ V2 ∪ V ′
1 ∪ V ′

2 ∪ {S}
P1 = {S → h1(w1)h2(w2)} ∪ {ai → gi(x) | a → x ∈ Ri, 1 ≤ i ≤ 2},
P2 = {a′i → ai | a ∈ V, 1 ≤ i ≤ 2}.

A configuration (w1v, w2u) of Γ with w1 ∈ (V \ F1)
∗, v ∈ F ∗

1 , w2 ∈ (V \ F2)
∗ and u ∈ F ∗

2

is described in the grammar system G by a word h1(w1)h2(w2)u. Such a word cannot
be processed by the first component of G and the second component of G cancels all
the primes, i.e., we obtain the word v1v2u where v1 is the variant of w1 where all letters
have the index 1 and v2 is the variant of w2 where all letters have the index 2. The first
component of G transforms a word v1v2u with v1 ∈ V ∗

1 and v2 ∈ V ∗
2 in u1u2 where u1 and

u2 are the indexed and primed versions of w′
1 and w′

2 with (w1, w2u) ` (w′
1, w

′
2u) besides

the letters of F1 which are cancelled since they do not contribute to Γ and the letters
of F2 which remain in the second membrane. Therefore there are words z1 ∈ (V \ F1)

∗,
z ∈ F ∗

1 , z2 ∈ (V \ F2)
∗ and u′ ∈ F ∗

2 such that w′
1 = z1z, w2 = z2u

′ and

h(w1)h(w2)u =⇒P1 v1v2u =⇒P2 h1(z1)h2(z2)u
′u

in G. Moreover, the derivation stops in G if and only if all letters belong to F2, and a
halting configuration in Γ is obtained if and only if all letters in membrane 1 belong to
F2 and all letters in membrane 2 belong to F2. Taking into consideration that the letters
of F1 are cancelled in G, we obtain that L(Γ) = N(L(G)). By Theorem 1.10 i), L(G) is
a context-free language. Hence N(L(G)) ∈ N(CF ). Therefore we have L(Γ) ∈ N(CF )
and L2(P, nco) ⊆ N(CF ) is shown. 2

Theorem 1.18 For all n ≥ 1, L1(P, coo) = Ln(P, coo) = L∗(P, coo) = N(RE).

Proof. By (1.1) it is sufficient to prove that N(RE) ⊆ L1(P, coo).
Let L ∈ N(RE). By Theorem 1.4, there is a matrix grammar G = (N, T, M, S, F )

such that L = N(L(G)). By Theorem 1.6, we can assume that G is in normal form. We
construct the membrane system

Γ = (N1 ∪N2 ∪ T ∪ {S,Z, #, H, H ′, H ′′} ∪ {HA | A ∈ N2}, [1]1, S, R1, 1)

with R1 consisting of all rules of the forms

(1) S → HXA for (S → XA) ∈ M,

(2) HXA → HY x for (X → Y,A → x) ∈ M,

(3) HX → H ′HAY, HAA → #, # → #, H ′ → H ′′, H ′′HA → H

for (X → Y, A → #) ∈ M,

(4) HZ → λ

12



Obviously, we have S =⇒ XA in G and (S) ` (HXA) in Γ, i.e., besides the additional
symbol H we have simulated a derivation step of G.

If we have a sentential form w = Xw1Aw2 in G, then we can apply a matrix of the form
(X → Y,A → x) and obtain Y w1xw2. In Γ we simulate this by applying HXA → HY x
to HXw1Aw2 which gives HY w1xw2, i.e., the simulation is correct.

The matrix (X → y, A → #) is only applicable to Xw if A does not occur in w and
results in Y w. Accordingly, if we apply HX → H ′HAY to Xw, we get H ′HAY w. If A is
present, i.e. w = w1Aw2, we have to apply H ′ → H ′′ and HAA → # in parallel (maximal
parallelism) and get H ′′#w1w2. However, now # → # can be applied at any moment
and thus we cannot come to a halting configuration. If A is not present, we get

H ′HAY w ` H ′′HAY w ` HY w,

i.e., again, the application of (X → y, A → #) is correctly simulated by the rules of (3).
If Z → λ is used in G we simulate this by HZ → lambda.
By these explanations it follows that L(Γ) = N(L(G)) = L and thus L ∈ L1(P, coo)

which proves N(RE) ⊆ L1(P, coo).
2

For catalytic systems the situation is different since the hierarchy has two levels.

Theorem 1.19 For all n ≥ 2, L1(P, cat) ⊂ L2(P, cat) = Ln(P, cat) = L∗(P, cat) =
N(RE).

Proof. We omit the proof of the strictness of the inclusion L1(P, cat) ⊂ L2(P, cat).
Let L be the length set of a recursively enumerable language. Then there is a matrix

grammar G = (N1 ∪ N2 ∪ {S,Z, #}, T,M, S, F ) in normal form (see Definition 1.5 and
Theorem 1.6) such that L = N(L(G)). Let (Xi → Yi, Ai → wi), 1 ≤ i ≤ s, and
(Xj → Yj, Aj → #), s + 1 ≤ j ≤ t, be the matrices of M which consist of two rules.
We note that any sentential form of G, which does not contain S or Z, contains exactly
one element of N1. Since for membrane systems the order of the letters in a word is not
important, we assume without loss of generality that, for 1 ≤ i ≤ s, wi = w′

iw
′′
i with

w′
i ∈ N∗

2 and w′′
i ∈ T ∗. If all elements of the multiset/word w = a1a2 . . . an are sent in

a membrane i, we write (w, ini) instead of (a1, ini)(a2, ini) . . . (an, ini). We construct the
catalytic membrane system

Γ = (V, [1[2]2]1, S, λ, R1, ∅, 2)

with

V = N1 ∪N2 ∪ {S, Z, #, $1, $2, $3, r, c0, c, §} ∪
t⋃

i=1

{ri, r
′
i, ci, Qi, Q

′
i} ∪

s⋃

i=1

{Q′′
i },

R1 = {S → c§c0c1 . . . ct§1rtXA | (S → XA) ∈ M}
∪ {c§ → c, c$2 → c, c0r → c0§, c0Z → c0, $1 → $2, $2 → $3, $3 → $1,

r → #, # → #, § → #}
∪ {ri → #, Xi → #, Q′

i → Yi, ciXi → ciX
′
ir

t
i , cir → ci, c0ri → c0r

′
i§,

c0r
′
i → c0r§, ci$2 → ci# | 1 ≤ i ≤ t}

13



∪ {cirj → cir
′
j, cir

′
j → cir | 1 ≤ i ≤ t, 1 ≤ j ≤ t, i 6= j}

∪ {Qi → Q′
i, ciAi → ciQ

′′
i , Q

′′
i → w′

i(w
′′
i , in2) | 1 ≤ i ≤ s}

∪ {ciQi → ciQ
′
i, ciAi → ci# | s + 1 ≤ i ≤ t}.

The catalysts are given by c, c0, c1, . . . , ct.
Let us consider a configuration (c§c0c1 . . . ctr

t§1XiAiz1, z2) and assume that it corre-
sponds to a sentential form which is up the order of the letters XiAiz1z2 with z1 ∈ N∗

2

and z2 ∈ T ∗.
We first discuss the case i ≤ s. To avoid the application of a rule § → #, r → #,

and Xi → # we have to use the rules c0r → c0§, cjr → cj for 1 ≤ j ≤ t, j 6= i, and
ciXi → ciQir

t
i (and $1 → $2). Thus we get

(c§c0c1 . . . ctr
t§1XiAiz1, z2) ` (c§c0c1 . . . ctr

t
i§2QiAiz1, z2).

By similar reasons, we now obtain

(c§c0c1 . . . ctr
t
i§2QiAiz1, z2) ` (c§c0c1 . . . ct(r

′
i)

t§3Q′
iQ

′′
i z1, z2)

(note that we introduce # via ci$2 → ci# if no Ai is present; in this case (Xi → Yi, Ai →
wi) is not applicable), and then

(c§c0c1 . . . ct(r
′
i)

t§3Q′
iQ

′′
i z1, z2) ` (c§c0c1 . . . ctrt§1Yiw

′
iz1, w

′′
i z2)

(note that ci is involved in no applied rule). The latter configuration corresponds to
Yiw

′
iz1w

′′
i z2 which is obtained from XiAiz1z2 by application of (Xi → Yi, Ai → wi).

If s + 1 ≤ i ≤ t, we want to simulate the application of (Xi → Yi, Ai → #). Thus Ai

has not to be present in the sentential form (since otherwise # is produced in the matrix
grammar and we cannot terminate). We get the following sequence of configurations:

(c§c0c1 . . . ctr
t§1Xiz1, z2) ` (c§c0c1 . . . ctr

t
i§2Qiz1, z2)

` (c§c0c1 . . . ct(r
′
i)

t§3Q′
iz1, z2)

` (c§c0c1 . . . ctr
t§1Yiz1, z2).

If Ai is present, then we introduce # in the last step via ciAi → ci#; if Ai is not present,
then ci is not involved in the last step. Obviously, the corresponding sentential form
Yiz1z2 is obtained from Xiz1z2 by application of (Xi → Yi, Ai → #).

It remains the case where Z is present. Then our configuration is (c§c0c1 . . . ctr
t§1Z, z),

and the sentential form is Zz with z ∈ T ∗. We obtain the transformations

c§c0c1 . . . ctr
t§1Z, z) ` (cc0c1 . . . ct$2, z) ` (cc0c1 . . . ct, z)

and the derivation Zz =⇒ z by application of (Z → λ). In both cases we have a halting
configuration. Thus L(Γ) = N(L(G)) = L. 2

For completeness we remark that we used t+2 catalysts where t is number of matrices
consisting of two rules in the matrix grammar in normal form. In [10], it has been shown
that two catalysts are sufficient to generate all recursively enumerable languages. It is
open whether one catalyst is sufficient.

14



1.3 Membrane Systems with Symport/Antiport Rules

In this section we discuss membrane systems without the ability of changing objects.
Hence only the moving through the membranes can be used for computation. Thus we
have a process which only works by the exchange of information. Hence the study of
these systems is also of interest from an information-theoretic point of view, since it is
investigated the power of communication.

In biology it is known that there are many cases where two chemicals pass through a
membrane at the same time with the help of each other. Both chemicals go in the same
direction (this is called symport) or in opposite direction (called antiport). Formally, such
movements can be written as (ab, in) or (ab, out) in symport case where both chemicals
come in or leave out a membrane, respectively, or as (b, out; a, in) denoting that a comes
in and b leaves a given membrane.

Obviously, if one considers membrane systems where any rule is a symport or antiport
rule, then no change of the involved chemicals occurs, and therefore finitely many objects
are only moving around, which gives only a strongly limited power. Therefore we add
symbols in the environment and assume that an infinite number of copies of each of these
symbols is present in the environment.

We now give the formal definition of a membrane system with symport/antiport rules.

Definition 1.20 i) A membrane system with m membranes and symport/antiport rules
is a construct

Γ = (V, µ, E, w1, w2, . . . , wm, R1, R2, . . . Rm, i)

where V , µ, w1, w2, . . . wm, R1, R2, . . . , Rm and i are specified as in membrane system, E
is a subset of V and, for 1 ≤ j ≤ m, Rj is a finite set of rules of the form (x, in) or
(x, out) or (x, out; , y, in) with x, y ∈ V +.

ii) A configuration of a membrane system with symport/antiport rules is a m-tuple
C = (u1, u2, . . . , um) of words (or equivalently, multisets) over V .

Let j, 1 ≤ j ≤ m, be a membrane and let j′ be the unique membrane which contains
membrane j. The application of a rule (x, in) of Rj to C results in taking the multiset
x out cj′ and adding to cj; the application of (x, out) is performed by subtracting x from
cj and adding to cj′; the application of (x, out; y, in) consists in a parallel application of
(x, out) and y, in) as described. If j is the outer membrane, then E takes the rule of
membrane j′ where any element of E is present in E infinitely often.

The transformation of a configuration C into a configuration C ′ (written as C ` C ′)
is done by a maximal parallel application of the rules of all Rj, 1 ≤ j ≤ m, to C.

A configuration C is called halting if no rules from the sets Rj, 1 ≤ j ≤ m, can be
applied to C

iii) The language L(Γ) generated by a membrane system Γ with symport/antiport rules
is the set of all numbers n such that there is a halting configuration C = (u1, u2, . . . , um)
of Γ with |ui| = n.

Example 1.21 We consider the membrane system

Γ = (V, [1[2]2]1, E, ac, df,R1, R2, 2)

15



with

V = {a, b, c, c′, d, e, e′, f, g, #},
E = {a, b, c, c′, e, e′, f, g, #},

R1 = {(c, out; #, in), (ca, out; cbb, in), (ca, out, c′bb, in), (da, out; #, in)

(c′d, out; e, in), (eb, out; ea, in), (eb, out; e′a, in), (fb, out; #, in),

(e′f, out; cdf, in), (e′f, out; g, in)},
R2 = {(d, out; c′, in), (c′, out), (f, out; e′, in), (e′, out), (df, in),

(#, in), (#, out), (ga, in), (g, out)}.
First we mention that the introduction of # is forbidden, again, because by the rules
(#, out) and (#, in) in R2 the symbol # can alternately moved from membrane 2 to
membrane 1 and conversely such that no halting configuration can be reached. Therefore
we have the following sequence of configurations (note that the case n = 1 is given initially)

(can, df) ` (cbban−1, df) by (ca, out; cbb, in) ∈ R1

` (cb4an−2, df) by (ca, out; cbb, in) ∈ R1
...

` (cb2n−2a, df) by (ca, out; cbb, in) ∈ R1

` (c′b2n, df) by (ca, out; c′bb, in) ∈ R1

` (db2n, c′f) by (d, out; c′, in) ∈ R2

` (dc′b2n, f) by (c′, out) ∈ R2

` (eb2n, f) by (dc′, out; e, in) ∈ R1

` (eab2n−1, f) by (eb, out; ea, in) ∈ R1

` (ea2b2n−2, f) by (eb, out; ea, in) ∈ R1
...

` (ea2n−1b, f) by (eb, out; ea, in) ∈ R1

` (e′a2n, f) by (eb, out; e′a, in) ∈ R1

` (fa2n, e′) by (f, out; e′, in) ∈ R2

` (e′fa2n, λ) by (e′, out) ∈ R1.

Now we have two possibilities of continuation:

(e′fa2n, λ) ` (cdfa2n, λ) by (e′f, out; cdf, in) ∈ R1

` (cbba2n−1, df) by (ca, out; cbb, in) ∈ R1, (df, in) ∈ R2

which means that, essentially, we have doubled the number of occurrences of a in mem-
brane 1 and can iterate this process, or

(e′fa2n, λ) ` (ga2n, λ) by (e′f, out; g, in) ∈ R1

` (a2n−1, ga) by (ga, in) ∈ R2

` (ga2n−1, a) by (g, out) ∈ R2

` (a2n−2, ga2) by (ga, in) ∈ R2

` (ga2n−2, a2) by (g, out) ∈ R2
...

` (λ, ga2n) by (ga, in) ∈ R2

` (g, a2n) by (g, out) ∈ R2

16



and a halting configuration is obtained. Therefore

L(Γ) = {2n | n ≥ 1}.

We now prove that membrane systems with symport/antiport rules, i.e., membrane
systems which only work on the basis of communication, are able to generate all recursively
enumerable sets of numbers.

Theorem 1.22 For any set L ∈ N(RE), there is a membrane system Γ with sym-
port/antiport rules such that L(Γ) = L.

Proof. By Theorems 1.4 and 1.6 there is a matrix grammar G = (N, T,M, S, F ) in
normal form such that L = N(L(G)). Let (S → X ′A′) be the only matrix in G of this
form. Let M have n matrices of the form (X → Y, A → x) or (X → Y, A → #).

We define the membrane system

Γ = (V, [1[2]2]1, E, cX ′A′, λ, R1, R2, 2)

with

V = N1 ∪N2 ∪ T ∪ {c, g, h, Z, #} ∪
n⋃

i=1

{ci, c
′
i, di},

E = N1 ∪N2 ∪ T ∪ {g, h, Z, #} ∪
n⋃

i=1

{ci, c
′
i, di},

Qi = {(cX, out; ciY, in), (ciA, out; cc′i, in), (c′i, out; x, in), (ci, out; #, in)}
for mi = (X → Y,A → x),

Qi = {(cX, out; cidi, in), (di, out; Y h, in), (ciA, out; #, in), (h, out; cg, in), (cig, out)}
for mi = (X → Y,A → #),

R1 = {(c, out; #, in), (cZ, out)} ∪
n⋃

i=1

Qi,

R2 = {(#, in), (#, out)} ∪ {(a, in) | a ∈ T}.

We note, again, that introducing the symbol # does not allow reaching of a halting
configuration since it can be move from the second membrane to the first membrane or
conversely at every moment.

Moreover, the second membrane only collects the terminals occurring at some moment
in the first membrane.

Therefore we now consider only the first component of a configuration. If it has the
form cXAw (as it is the case for the initial configuration), then we can without introducing
# only perform the following steps

cXAw ` ciY Aw ` cc′iY w ` cY xw

which means that we have correctly applied the simulation of the matrix mi = (X →
Y, A → x) and can proceed with the simulation of a further matrix.

17



If the configuration is cXw and A does not occur in w, then the following steps have
to be done

cXw ` cidiw ` ciY hw ` ciY cgw ` cY w

which is a correct simulation of the application of (X → Y,A → #).
Moreover, in both cases we stop if no nonterminal is present in the sentential form

or in the first membrane (since the configuration (cZw, x) is only reachable if w ∈ λ).
Therefore L(Γ) = N(L(G)) = L. 2

18



Bibliography

[1] L. M. Adleman, Molecular computation of solutions to combinatorial problems.
Science 226 (1994) 1021-1024.

[2] C. Calude and Gh. Păun, Computing with Cells and Atoms. Taylor and Francis,
London, 2001.

[3] J.W. Carlyle, S. Greibach and A. Paz, A two-dimensional generating system
modelling growth and binary cell division. In: Proc. 15th Annual Symp. Switching
Automata Theory, 1–12, 1974.

[4] E. Csuhaj-Varju, J. Kelemen, A. Kelemenova and Gh. Păun,
Eco(grammar)systems - a grammatical framework for lifelike interaction. Artificial
Life 24 (1997) 1–28.

[5] J. Dassow, Grammars with valuations - a discrete model for self-organization of
biopolymers. Discr. Appl. Math. 4 (1982) 161–174.

[6] J. Dassow, Theoretische Informatik, Vorlesungsskript, Otto-von-Geuricke-
Universität Magdeburg, 2001.

[7] J. Dassow, V. Mitrana and A. Salomaa, Operations and language generating
devices suggested by genome evolution. Theor. Comp. Sci. 270 (2002) 701–738.

[8] J. Dassow and Gh. Păun, Regulated Rerwriting in Formal Language Theory.
Springer-Verlag, Berlin, 1989 and Akademie-Verlag, Berlin, 1989.

[9] J. Dassow and Gy. Vaszil, Multiset splicing systems. BioSystems 74 (2004) 1–7.

[10] R. Freund, L. Kari, M. Oswald and P. Sosik, Computationally universal P
systems without priorities: two catalysts are sufficient. Theor. Comp. Sci. 330 (2005)
251–266.

[11] T. Head, Formal language theory and DNA: An analysis of the generative capacity
of specific recombinant behaviors. Bull. Math. Biology 49 (1987) 737–759.

[12] T. Head, Gh. Păun and D. Pixton, Language theory and molecular genetics. In:
[30], Vol. II, Chapter 7, 295–360

[13] G.T. Herman and G. Rozenberg, Developmental Systems and Languages. North-
Holland Publ. Co., Amsterdam, 1975.

19



[14] D. Janssens, G. Rozenberg and R. Verraedt, On sequential and parallel node-
rewriting graph grammars. Part I, Computer Graphics and Image Processing 18
(1982) 279–304 and Part II, Computer Vision, graphics and Image Processing 23
(1983) 295–312.

[15] L. Kari, G. Rozenberg and A. Salomaa, L systems. In: [30], Vol. I, Chapter 5,
253–328.

[16] A. Lindenmayer, Mathematical models for cellular interaction in development I
and II. J. Theoret. Biol. 18 (1968) 280–315.

[17] A. Lindenmayer and G. Rozenberg (eds.), Automata, Languages, Development.
North-Holland Publ. Co., 1976.

[18] R. J. Lipton, Using DNA to solve NP-complete problems. Science 268 (1995) 542–
545.

[19] J. Opatrny and K. Culik II, Time complexity of recognition and parsing of E0L
languages. In [17], 243–250.

[20] A. Păun and Gh. Păun, The power of communication: P systems with symport
and antiport. New Generation Computing 20 (2002) 295–306.

[21] Gh. Păun, Computing with membranes. J. Comp. System Sci. 61 (2000) 108–143.

[22] Gh. Păun, Membrane Computing. Springer-Verlag, Berlin, 2002.

[23] Gh. Păun, G. Rozenberg and A.Salomaa, DNA Computing - New Computing
Paradigms. Springer-Verlag, Berlin, 1998.

[24] Gh. Păun and A.Salomaa, DNA computing based on the splicing operation. Math-
ematica Japonica 43 (1996) 607–632.

[25] P. Pruzinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants.
Springer-Verlag, Berlin, 1990.

[26] G. Rozenberg and A.Salomaa (eds.), L Systems. LNCS 15, Springer-Verlag,
Berlin, 1974.

[27] G. Rozenberg and A.Salomaa, The Mathematical Theory of L Systems. Aca-
demic Press, New York, 1980.

[28] G. Rozenberg and A.Salomaa (eds.), The Book of L. Springer-Verlag, Berlin,
1985.

[29] G. Rozenberg and A.Salomaa (eds.), Lindenmayer Systems. Springer-Verlag,
Berlin, 1992.

[30] G. Rozenberg and A.Salomaa (eds.), Handbook of Formal Languages. Vol I – III,
Springer-Verlag, 1997.

20



[31] A. Salomaa, Formal Languages. Academic Press, New York, 1973 (german edition,
Springer-Verlag, Berlin, 1978).

[32] A. Salomaa, Jewels of Formal Language Theory. Computer Science Press,
Rockville, 1981.

21


