




Chapter 11

Formal Languages and DNA
Molecules

11.1 Basics from biology

We do not want to give a precise introduction to DNA molecules from the biological and
chemical point of view. We here only mention some facts which are important for the
mutations and changes of DNA molecules and are the fundamentals for the operations
with DNA strands to perform computations or to describe evolution.

The nucleotides which form the DNA strands are molecules that consist of a base -
which is adenine, cytosine, guanine or thymine - a sugar group and a phosphate group.
Figure ?? gives the nucleotide with the thymine base. The left part is the thymine base and
the right part gives two phosphate groups. In the sequel we shall denote the nucleotides by
A, C, G and T, depending on its base adenine, cytosine, guanine and thymine, respectively.
The five carbon groups CH within the sugar group in the middle part are denoted by 1’,
2’, 3’, 4’ and 5’. One can see that groups 3’ and 5’ are connected to phosphate groups.
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Figure 11.1: Diagram of a molecule with thymine base
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140 CHAPTER 11. FORMAL LANGUAGES AND DNA MOLECULES

Thus, the phosphate groups are able to link two bases. We note that one assumes that
the connection is directed from the 5’ part to the 3’ part. Using some such links we get a
sequence of connected bases which is called a single stranded DNA molecule. An example
consisting of a thymine, a guanine and a cytosine group is shown in the upper part of
Figure 11.2; the lower part shows the single strand formed by a guanine, a cytosine and
an adenine group (note that we go from left to right in the upper part and from right to
left in the lower part to ensure the direction from 5’ to 3’).

Moreover, the leftmost C in the thymine group in Figure 11.1 has two free bonds. The
same holds for the adenine group. Therefore, the thymine group and the adenine group
can be connected via hydrogen bonds (this is an attractive force between the hydrogen
attached to an electronegative atom of a molecule and an electronegative atom of another
molecule). Furthermore, the guanine group and the cytosine group have three free bonds
each, and hence they can be connected, too. This possibility of pairing adenine with
thymine (or thymine with adenine) and guanine with cytosine (or cytosine with guanine)
is called the Watson-Crick complementarity.1 Thus we get the molecule of the form shown
in Figure 11.2. Such a molecule is a double stranded DNA molecule. However, we mention
that Figure 11.2 only gives schematic presentation of a double stranded DNA molecule;
in reality, the molecule is twisted in the three-dimensional space, i. e., it is far from the
linear structure as given in Figure ??.

We mention that the connection of the thymine and adenine group and guanine and
cytosine group are very weak. They can already be destroyed by heating to appr. 900C.
The link of the bases via the phosphate group is much stronger.

From the point of formal languages or words over an alphabet, a DNA molecule can
be described as a word of pairs
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where we have written the components of the pair above each other. Obviously, the
double stranded DNA is already completely determined if we only know one of its single
stranded parts. By the Watson-Crick complementarity, the other single stranded molecule
as well as the connections are uniquely determined. Thus, in many cases, it is sufficient
to consider a single stranded DNA molecule which can be represented by a word over the
alphabet {A, C, G, G}.

First we give a method to extract DNA strands of a certain length from a set of DNA
strands. We first produce a gel which is put into a rectangular container. Then along one
side of the container we form some wells, e.g., by means of a comb. Then we fill a small
amount of DNA strands into the wells and add a charges at the ends of the container.
Since DNA strands are negatively charged they move through the gel from left to right.
Obviously, the speed depends on the length of the strands. Therefore taking into account
the duration and the place we can select strands of a certain length (see Figure 11.3).

We now come to some operations which change the DNA under consideration.
Figure 11.4 shows the polymerase, where in the direction from 5’ to 3’ we complete a

partial double strand to a complete double strand. The transferase is an operation where
we add in one strand in the direction from 5’ to 3’ further nucleotides.

1Other possible pairings are so weak that they have not be considered.
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Figure 11.2: Diagram of a double stranded DNA molecule
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Figure 11.3: Measuring the length of DNA molecules by gel electrophoresis

An important operation is the polymerase chain reaction. One cycle consists of three
steps. First we separate the bonds between the two strands by a heating to a temperature
near to the boiling temperature (see upper part of Figure 11.5). Then we assume that in
the solution are so-called primers which connect at appropriate positions by the Watson-
Crick complementarity. For simplicity, in Figure 11.5, we use primers for the right end of
the upper strand and the left end of the lower strand; in reality they can be somewhere in
the strand. If we cool the solution, then the primers are connected with the corresponding
ends (see the middle part of Figure 11.5). Finally, by a polymerase we can fill the missing
parts and obtain two copies of the original DNA strand (see lower part of Figure 11.5).

This cycle can be iterated. After some cycles we have drastically increased the number
of the strand we are interested in. Now there is a chance by some filtering to check whether



142 CHAPTER 11. FORMAL LANGUAGES AND DNA MOLECULES

this strand is contained in a solution or in a tube.
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Figure 11.4: Polymerase
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Figure 11.5: Polymerase chain reaction

We now consider the endonuclease which is an operation where the strand is cut at
certain places. There are some enzymes which recognize a part of the strand and its
direction and are able to cut the phosphodiester bond between some nucleotides.

In the left part of Figure 11.6 this procedure is shown for the restriction enzyme
NdeI which is produced by the bacteria Neisseria denitrificans. It has the recognition
site CATATG in the upper strand. If we take into consideration the direction, then the
recognition site in the lower part is the same. The cut is performed after the first A in
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both strands (taking into consideration the direction). The bonds between both strands
of the molecule are separated between the cuts. We obtain two new strands with some
overhangs. In this case, we speak of so-called sticky ends.

The right part of Figure 11.6 shows the same procedure for the restriction enzyme
HaeIII (isolated from the bacteria Heamophilus aegyptius) with the recognition site GGCC.
The cut is performed after the second G. In this case we obtain so-called blunt ends.
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Figure 11.6: Endonuclease

The endonuclease can be reversed, i. e., intuitively the two double strands obtained by
the endonuclease are again glued together which results in the original doubled stranded
molecule. More formally, two steps are performed. First, a hydrogen bond connects the
overhangs of two double strands according to the Watson-Crick complementarity. Then a
ligase is done which connects the phosphate groups. For an illustration, see Figure 11.7.
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Figure 11.7: Hydrogen bonding and DNA ligase

Finally, we introduce the splicing operation. It consists of a endonuclease, which cuts
two double strand according to two enzymes in such a way that the obtained overhangs
are identical in both strands. Therefore we can glue them together by a hydrogen bonds
and ligase after an exchange of the ends. Thus starting from two DNA strands we obtain
two new DNA strands. Illustrations of the splicing operation with sticky and blunt ends
are given in Figures 11.8 and 11.9, respectively.

In order to formalize the splicing operation we consider it in a more formal way. We
set

A = T, AC = G, G = C, T = A,

i. e., the overlined version of a is the letter which corresponds to a by the Watson-Crick
complementarity. If p = a1a2 . . . an is a word over {A, C, G, T} which represents the upper
strand of a word, then we denote by (p) = (a1)(a2) . . . (an) the corresponding lower strand,
where both strands are read from left to right. Let the two double strands

α1 x1 y z1 β1

α1 x1 y z1 β1

and
α2 x2 y z2 β2

α2 x2 y z2 β2
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Figure 11.8: Splicing with sticky ends
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with the recognition sites x1yz1 and x2yz2 in the upper strands and the common overhang
y be given. If we have blunt ends, then y = λ holds. Then the cutting of the two strands
leads to

α1 x1

α1 x1 y

y z1 β1

z1 β1

and
α2 x2

α2 x2 y

y z2 β2

z2 β2

and the hydrogen bonds and ligases give

α1 x1 y z2 β2

α1 x1 y z2 β2

and
α2 x2 y z1 β1

α2 x2 y z1 β1

.

Using the notation

u1 =
α1

α1

, r1 =
x1

x1y
, r2 =

yz1

z1

, u2 =
β1

β1

, v1 =
α2

α2

, r3 =
x2

x2y
, r4 =

yz2

z2

, and v2 =
β2

β2

we get that the words

u1r1r2u2 and v1r3r4v2 are transformed into u1r1r4v2 and v1r3r2u2. (11.1)

In the sequel, we shall use the latter variant to describe a splicing.

11.2 Adleman’s experiment

In this section we shall demonstrate how one can solve non-biological problems by ap-
plying the operations considered in the preceding section. We partly follow the ideas
by L. M. Adleman who was one of the first scientists solving a hard problem by easy
calculations with DNA molecules.

We regard the Hamilton path problem. It requires to find a path in a graph which
starts and ends in two given nodes and contains each node of the graph exactly once.

Let us consider the graph H shown in Figure 11.10. Obviously, H has a Hamiltonian
path which starts in the node labelled by 0 and follows the labels of the nodes in their
natural order (thus ending in the node labelled by 6).

By Theorem 3.41, we know that the Hamilton path problem is NP -complete. Hence
we cannot expect that there is an algorithm solving the Hamilton path problem in poly-
nomial time by Turing machines (or by register machines or by a programming languages.
Therefore the Hamilton path problem can be considered as a hard problem.

A very simple algorithm to find a Hamiltonian path in a graph G with n nodes or to
find that there exists no Hamiltonian path in G consists of the following steps.

1. Construct all paths in G.
2. Take only paths of length n.
3. Take only paths starting in v0 and ending in v1.
4. Take only paths containing all nodes.
We now show how we can perform the steps 1. - 3. by means of DNA molecules.
For this purpose we model the nodes by single upper DNA strands of length 20 given

in their 5’-3’ orientation. For instance we choose

node labelled by 2 corresponds to TATCGGATCGGTATATCCGA,
node labelled by 3 corresponds to GCTATTCGAGCTTAAAGCTA,
node labelled by 4 corresponds to GGCTAGGTACGAGCATGCTT .
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Figure 11.10: Graph whose Hamiltonian path problem is solved by DNA operations by
Adleman

To model the edges we use single lower strands of length 20, too, in their 3’-5’ orientation.
Because we want to model edges we have to take into them information from the two nodes
which are connected. One simple possibility is to take the Watson-Crick complementary
of the second half of the strand modelling the start node of the edge and the first half of
the end node of the edge. Thus we obtain that the

edge from 2 to 3 is modelled by CATATAGGCTCGATAAGCTC,
edge from 3 to 4 is modelled by GAATTTCGATCCGATCCATG.

Then by hydrogen bonding and ligase the following double stranded DNA molecule

TATCGGATCGGTATATCCGAGCTATTCGAGCTTAAAGCTAGGCTAGGTACGAGCATGCTT
CATATAGGCTCGATAAGCTCGAATTTCGATCCGATCCATG

can be build. Its structure is of the form

v(2) v(3) v(4)

e(2, 3) e(3, 4)

where v(i) represent the node labelled by i and e(i, j) represents the edge going from the
node labelled by i to that labelled by j. This structure can be considered as a model of
the path from 2 to 4 via 3.

Therefore we can build all paths if we put the models of nodes and edges in a tube.
Thus we have performed Step 1 of the above algorithm.

The second step requires the filtering of strands with a certain length. This can be
done by the method presented in the preceding section (see Figure ??).

In order to perform step 3 we can take the polymerase chain reaction by which we can
produce a lot of molecules which start and stop with a certain sequence of DNA molecules.
Then we can filter out those with this start and end sequence.

We do not discuss the methods to do the fourth step.
All together we can produce a tube which contains with high probability a molecule

which represents a hamiltonian path, i. e., we can solve the Hamilton path problem by
means of DNA molecules and operations on it.
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However, two critical remarks are necessary. First, in order to get a probability which is
very near to one, we need a very large number of molecules, at least much more molecules
as we can put in a tube. Second, the execution of the steps by the methods given above
takes some time; L. M. Adleman needs hours to solve the Hamilton path problem for
the graph H of Figure 11.10, i. e., its solving by DNA structures takes more time than
the solving by electronic computers.

On the other side, Adleman implemented its solving process by methods which only
need a number of steps which is linear in the number of nodes. This contrast the well-
known fact that the Hamilton path problem is NP-complete (which means that we cannot
expect an polynomial algorithm for this problem if we restrict to classical deterministic
and sequential algorithms). Moreover, R. J. Lipton (see [21]) has presented a general
method which allows a polynomial DNA computation for a lot of NP-complete problems.
Therefore DNA computing can be considered as a method to solve hard problems in
polynomial time (if we have fast implementations of the DNA operations).

Note that the existence of polynomial DNA algorithms for NP-complete problems is
not surprising, since it is based on a parallelism since many molecules act in each step. We
know that NP-complete problems can be solved in polynomial time by nondeterministic
algorithms.

11.3 Splicing as an operation

In Section ?? we have mentioned splicing as an operation which occurs in the develop-
ment/evolution of DNA molecules. In this section we formalize this operation and obtain
an operation on words and languages. We study the power of the splicing operation on
words, languages and language families.

11.3.1 Non-iterated splicing

We start with a formalization of the splicing such that it is an operation applicable
to words and languages and allows a definition of a derivation and a device similar to
grammars.

Definition 11.1 A splicing scheme is a pair (V, R), where
– V is an alphabet and
– R is a subset of V ∗#V ∗$V ∗#V ∗.

The elements of R are called splicing rules. Any splicing rule r1#r2$r3#r4 identifies
four words r1, r2, r3 and r4. Obviously, this can be done by an quadruple (r1, r2, r3, r4),
too. However, in the sequel we shall consider the sets of splicing rules as languages, and
thus we prefer to present them as words over V ∪ {#, $}.

Definition 11.2 i) We say that w ∈ V ∗ and z ∈ V ∗ are obtained from u ∈ V ∗ and
v ∈ V ∗ by the splicing rule r = r1#r2$r3#r4, written as (u, v) |=r (w, z), if the following
conditions hold:

– u = u1r1r2u2 and v = v1r3r4v2,
– w = u1r1r4v2 and z = v1r3r2u2.
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This definition describes the situation given in (11.1). The words r1r2 and r3r3 describe
the recognition sites of the enzymes and the splitting can be done between r1 and r2 as
well as between r3 and r4 (if we only consider the upper strand). Note that, in the case of
sticky ends, r2 and r4 have to have a common non-empty prefix. This will not be required
in the sequel, but one has to have it in mind, if one is interested in modelling splicing
which occurs in biology.

We now give a slight modification of this formalization by emphasizing the getting of
the new word w and omitting the word z which is obtained, too. As we shall see below,
this can be done because z will have some features, we are not interested in, such that we
do not take it into consideration.

Definition 11.3 i) For two words u ∈ V ∗ and v ∈ V ∗ and a splicing rule r = r1#r2$r3#r4,
we define the word w obtained from u, vand r by a simple splicing, written as (u, v) `r w,
by the following conditions:

– u = u1r1r2u2 and v = v1r3r4v2,
– w = u1r1r4v2

ii) For a language L over V and a splicing scheme (V, R), we set

spl(L,R) = {w | (u, v) `r w, u ∈ L, v ∈ L, r ∈ R}.
For two language families L1 and L2, we set,

spl(L1,L2) = {L′ | L′ = spl(L,R) for some L ∈ L1

and some splicing scheme (V,R) with R ∈ L2}.
Example 11.4 We consider the language L = {anbn | n ≥ 0} and the splicing scheme
(V, R) with V = {a, b} and R = {a#b$a#b}. First we note that the only rule r of R is
only applicable to words anbn with n ≥ 1. Let u = anbn and v = ambm be two arbitrary
words from L with m,n ≥ 1. Then we obtain

(anbn, ambm) = (an−1abbn−1, am−1abbm−1) `r anbm.

Since n and m are arbitrary positive integers, we get

spl(L,R) = {anbm | n,m ≥ 1} .

Example 11.5 For the splicing system ({a, b, c, c′}, R) with

R = {canbn#c′$c′# | n ≥ 1}
and the language

L = {c}{a, b}+{c′},
we obtain

spl(L,R) = {c}{anbn | n ≥ 1}
since the only simple splicing is (canbnc′, cvc′) `r canbn applying the rule canbn#c′$c′#.

(We note that the other word z which is obtained by this splicing is z = cvc′c′. It
contains two times the letter c′ such that it is not of interest if we restrict ourselves to
words over {a, b, c}.)
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Example 11.6 Let L and L′ be two arbitrary languages over V . Further, let (V ∪{c}, R)
be a splicing scheme with

R = {#xc$c# | x ∈ L′}.
Then we get

spl(L{c}, R) = {w | wx ∈ L for some x ∈ L′}
because simple splicing is only possible if u = wxc and v = w′c for some words wx, w′ ∈ L,
and x ∈ L′. Finally, by the definition of the right quotient Dr,

spl(L{c}, R) = Dr(L,L′).

(We note that the other word z obtained by splicing is z = w′cxc which we are not
interested in since it contains two times the letter c.)

Example 11.7 We want to show that

{anbn | n ≥ 1} /∈ spl(L(REG),L(RE)),

or more precisely, that L = {anbn | n ≥ 1} cannot be obtained from a regular set by
(arbitrary) splicings. Note that, by Example 11.5, we can get {c}L from a regular set by
splicing with a context-free set.

Assume that there are a regular language K and a splicing scheme (V, R) such that
spl(K, R) = L. By the pumping lemma for regular languages (see Theorem 2.31), there
is a constant m such that any word z ∈ K with |z| ≥ m has a decomposition z = z1z2z3

with |z1z2| ≤ m, |z2| > 0, and z1z
i
2z3 ∈ K for all i ≥ 0.

By definition, there are words u = u1r1r2u2 and v = v1r3r4v2 and a splicing rule
r = r1#r2$r3#r4 ∈ R such that

(u, v) `r= u1r1r4v2 = am+1bm+1.

Obviously, u1r1 = am+1z or r4v2 = z′bm+1 for certain words z and z′, respectively. We
only discuss the former case; the latter one can be handled analogously. If we decompose
u according to the pumping lemma, we get u = z1z2z3 with z2 = at for some t ≥ 1.
Consequently,

u′ = z1z
2
2z3 = am+1+tzr2u2 = atu1r1r2u2 ∈ K.

Thus

(u′, v) = (atu1r1r2u2, v1r3r4v2) ` atu1r1r4v2 = at+m+1bm+1.

Therefore at+m+1bm+1 ∈ spl(K, R) in contrast to at+m+1bm+1 /∈ L.

In the following theorem we determine the language families spl(L1,L2) or upper and
lower bounds for these families where L1 and L2 vary over some language families from
the Chomsky hierarchy and the family of finite languages.

Theorem 11.8 The table of Figure 11.11 holds, where at the intersection of the row
marked by X and the column marked by Y we give Z if L(Z) = spl(L(X),L(Y )) and
Z1/Z2 if L(Z1) ⊂ spl(L(X),L(Y )) ⊂ L(Z2).
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FIN REG CF CS RE
FIN FIN FIN FIN FIN FIN
REG REG REG REG/CF REG/RE REG/RE
CF CF CF RE RE RE
CS RE RE RE RE RE
RE RE RE RE RE RE

Figure 11.11: Relations for the families spl(L1,L2)

Theorem 11.8 can be considered as a result on the power of the splicing operation. We
see an indifferent picture. On one hand side its power is large since context-free splicing
rules applied to context-free languages give already all recursively enumerable languages.
On the other side, if we start with regular languages, then we cannot obtain such easy
languages as {anbn | n ≥ 1} (see Example 11.7) and by regular splicing rules we have
almost no change of the family.

Before we give the proof of Theorem 11.8 we present some lemmas which will be used
in the proof and are of own interest since they can be applied to other language families,
too. The first lemma follows directly from the definitions.

Lemma 11.9 For any language families L1,L2,L′1,L′2 with L1 ⊆ L′1 and L2 ⊆ L′2, we
have spl(L1,L2) ⊆ spl(L′1,L′2). 2

Lemma 11.10 If L1 is closed under concatenation with symbols, then L1 ⊆ spl(L1,L2)
for all language families L2.

Proof. Let L ⊆ V ∗ be an arbitrary language in L1 and c a symbol not in V . We
set L′ = L{c} and consider the splicing system (V ∪ {c}, R) with the single element set
R = {#c$c#}. Then we obtain spl(L′, R) = L because the only possible simple splicings
are given by (uc, vc) ` u where u and v are arbitrary elements of L. 2

Lemma 11.11 If L is closed under concatenation, homomorphism, inverse homomor-
phisms and intersections with regular sets, then spl(L,L(REG)) ⊆ L.

Proof. Let L be an arbitrary language of L. Then we set L1 = L{$}L. Let

h1 : (V ∪ {$, #})∗ → (V ∪ {$})∗

be the homomorphism defined by

h1(a) = a for a ∈ V, h1($) = $, h1(#) = λ.

Then h−1
1 (L1) consists of all words which can be obtained from words of L1 by putting

some occurrences of # between some letters of V ∪ {$}. Thus

L2 = h−1
1 (L1) ∩ V ∗{#}V ∗{$}V ∗{#}V ∗ = {w1#w2$w3#w4 | w1w2, w3w4 ∈ L}.

Let
V ′ = {a′ | a ∈ V }, V ′′ = {a′′ | a ∈ V }, V ′′′ = {a′′′ | a ∈ V }.
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Furthermore, we consider the homomorphism

h2 : (V ∪ V ′ ∪ {#, $})∗ → (V ∪ {#, $})∗

defined by

h2(a) = a for a ∈ V, h2($) = $, h2(#) = #, h2(a
′) = a for a′ ∈ V ′

and the regular set
K = V ∗{#}(V ′)∗{$}(V ′)∗{#}V ∗.

Then
L3 = h−1

2 (L2) ∩K = {w1#w′
2$w

′
3#w4 | w1w2 ∈ L, w3w4 ∈ L}

is a language in L by the closure properties of L.
Now let (V, R) be a splicing scheme with a regular set of splicing rules. Using the

homomorphisms

h3 : (V ∪ V ′ ∪ V ′′ ∪ V ′′′ ∪ {#, $})∗ → (V ∪ {#, $})∗
h4 : (V ∪ V ′ ∪ V ′′ ∪ V ′′′ ∪ {#, $})∗ → (V ∪ V ′ ∪ {#, $})∗

defined by

h3(a) = a for a ∈ V, h3($) = $, h3(#) = #, h3(a
′) = λ for a ∈ V,

h3(a
′′) = a for a ∈ V, h3(a

′′′) = λ for a ∈ V,

h4(a) = a for a ∈ V, h4($) = $, h4(#) = #, h4(a
′) = a for a ∈ V,

h4(a
′′) = a′ for a ∈ V, h4(a

′′′) = a′ for a ∈ V

and the regular set

K ′ = (V ′)∗V ∗{#}(V ′′)∗(V ′′′)∗{$}(V ′′′)∗(V ′′)∗{#}V ∗(V ′)∗.

We get

L4 = h4(h
−1
3 (R) ∩K ′) = {u1r1#r′2u

′
2$v

′
1r
′
3#r4v2 | u1, u2, v1, v2 ∈ V ∗, r1#r2$r3#r4 ∈ R}.

The language L3 is regular by the closure properties of L(REG).
Now we define the homomorphism

h5 : (V ∪ V ′ ∪ {#, $})∗ → (V ∪ {#, $})∗

by
h5(a) = a for a ∈ V, h5($) = λ, h5(#) = λ, h5(a

′) = λ for a ∈ V.

Then h5(L3 ∩ L4) ∈ L consists of all words of the form u1r1r4v2 and thus h5(L3 ∩ L4) =
spl(L,R) ∈ L. Therefore spl(L,L(REG)) ⊆ L. 2

Lemma 11.12 If L is closed under homomorphism, inverse homomorphisms and inter-
sections with regular sets, then spl(L(REG),L) ⊆ L.
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Proof. From a regular set L a set R ∈ L of splicing rules, we construct the languages

L′ = {w1#w′
2$w

′
3#w4 | w1w2 ∈ L,w3w4 ∈ L}

and
R′ = {u1r1#r′2u

′
2$v

′
1r
′
3#r4v2 | u1, u2, v1, v2 ∈ V ∗, r1#r2$r3#r4 ∈ R}

as in the proof of Lemma 11.11 and from these two sets spl(L,R) which then belongs
to L. 2

Proof of Theorem 11.8 We prove the statements row by row from left to right.

If L is a finite language, then we can only apply to words of L such rules r1#r2$r3#r4

of R where r1r2 and r3r4 are subwords of words in L. Hence we have only to consider a
finite set of splicing rules. By application of a finite set of splicing rules to a finite set of
words we only obtain a finite set. Thus spl(L(FIN),L(RE)) ⊆ L(FIN).

If we combine this result with that of Lemmas 11.10 and 11.9, for all families X ∈
{FIN, REG,CF, CS,RE}, we get

L(FIN) ⊆ spl(L(FIN),L(FIN)) ⊆ spl(L(FIN),L(X))

⊆ spl(L(FIN),L(RE)) ⊆ L(FIN)

and thus
spl(L(FIN),L(X)) = L(FIN).

By Lemmas 11.10, 11.9, and 11.12, we get

L(REG) ⊆ spl(L(REG),L(FIN)) ⊆ spl(L(REG),L(REG)) ⊆ L(REG)

which proves the first two statements of the row belonging to REG.
By Lemma 11.9, we have L(REG) ⊆ spl(L(REG),L(X)) for X ∈ {CF,CS,RE}.

Moreover, this inclusion is strict by Example 11.5 because {c}{anbn | n ≥ 1} is not a
regular language.

By the closure properties of L(CF) and L(RE) (see Section ??) and Lemma 11.12,

spl(L(REG),L(CF)) ⊆ L(CF) and spl(L(REG),L(RE)) ⊆ L(RE).

Moreover,
spl(L(REG),L(CS)) ⊆ spl(L(REG),L(RE)) ⊆ L(RE)

by Lemma 11.9. These inclusions are strict by Example 11.7.

The relations L(CF) = spl(L(FIN),L(CF)) = spl(L(REG),L(CF)) can be shown as
above for regular languages.

By Lemma ??, for any recursively enumerable language L, there are context-free
languages L1 and L2 such that L = Dr(L1, L2). As in Example 11.6 we can prove that
L ∈ spl(L(CF),L(CF)). Therefore we obtain

L(RE) ⊆ spl(L(CF),L(CF)). (11.2)

Furthermore,
spl(L(RE),L(RE)) ⊆ L(RE) (11.3)
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can be proved by constructing a grammar which generates spl(L,R) for given (recursively
enumerable) languages L and R. (We omit a detailed construction. Informally, we first
construct a grammar which generates L§L§R, where § is a new symbol which separates
the words. If a word w1§w2§r1#r2$r3#r4 is generated, we look for subwords r1r2 in w1

and r3r4in w2. In the affirmative case, the word is u1r1r2u2§v1r3r4v2§r1#r2$r3#r4. By
some cancellations we obtain the word u1r1r4v2. It is easy to see that the tasks can be
solved by nonterminals moving in the word.)

For X ∈ {CF,CS,RE}, combining (11.2), (11.3), and Lemma 11.9 gives

L(RE) ⊆ spl(L(CF),L(CF)) ⊆ spl(L(CF),L(X))

⊆ spl(L(CF),L(RE)) ⊆ spl(L(RE),L(RE))

⊆ L(RE)

which implies

spl(L(CF),L(X)) = L(RE).

By Lemma 4.26, for any recursively enumerable language L, there is a context-sensitive
language L′ such that L′ ⊆ L{c1c

n
2c3 | n ≥ 0}, and for any w ∈ L, there is an n such

that wc1c
n
2c3 ∈ L′. It is easy to see that spl(L′, {#c1$c3#}) = L. Thus L(RE) ⊆

spl(L(CS),L(FIN)). As in the case of context-free languages we can now prove that

L(RE) = spl(L(CS),L(X)) = spl(L(RE),L(X))

for X ∈ {FIN,REG,CF,CS,RE}. 2

11.3.2 Iterated splicing

Simple splicing is an operation which generates one word from two words. This situation
is similar to a derivation step in a grammar or L system where we generate one word from
one word. However, in the theory of languages we consider the reflexive and transitive
closure of the derivation relation. This corresponds to an iterated performing of derivation
steps. We now present the analogous concept for the splicing operation.

Definition 11.13 A splicing system is a triple G = (V,R, A) where

– V is an alphabet,

– R is a subset of V ∗#V ∗$V ∗#V ∗ and

– A is a subset of V ∗.

Definition 11.14 The language L(G) generated by a splicing system G is defined by the
following settings:

spl0(G) = A,

spli+1(G) = spl(spli(G), R) ∪ spli(G) for i ≥ 0,

L(G) =
⋃
i≥0

spli(G).
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The essential difference to language generation by grammars and L systems is that we
start with a set of words instead of a single word. Moreover, this start language can be
infinite.

Furthermore, we mention that splicing systems have a biological meaning. Evolution is
based on changes in the DNA strands. Such changes can be originated by splicings. Thus
the application of a splicing rule can be considered as a step in the evolution. Therefore
the elements generated by a splicing system can be considered as those DNAs which
can be obtained during an evolution from elements of a given set A by evolution steps
modelled by the splicing rules in R.

Example 11.15 We consider the splicing system

G = ({a, b}, {a#b$a#b}, {anbn | n ≥ 1}) .

By Example 11.4, we have

spl0(G) = {anbn | n ≥ 1},
spl1(G) = spl({anbn | n ≥ 1}, {a#b$a#b}) ∪ {anbn | n ≥ 1}

= {arbs | r, s ≥ 1} ∪ {anbn | n ≥ 1}
= {arbs | r, s ≥ 1},

spl2(G) = spl({arbs | r, s ≥ 1}, {a#b$a#b}) ∪ {arbs | r, s ≥ 1}
= {arbs | r, s ≥ 1} ∪ {arbs | r, s ≥ 1}
= {arbs | r, s ≥ 1}.

Thus we get spl2(G) = spl1(G). This implies by induction

splm(G) = spl(splm−1(G), {a#b$a#b}) ∪ splm−1(G)

= spl(spl1(G), {a#b$a#b}) ∪ spl1(G)

= spl2(G)

= spl1(G).

Therefore
L(G) =

⋃
i≥0

spli(G) = {arbs | r, s ≥ 1},

i. e., that the iteration does not increase the power (see Example 11.4).
The situation completely changes if we consider the splicing system

G′ = ({a, b}, {a#b$a#b}, {(anbn)2 | n ≥ 1}).

We obtain

spl1(G′) = {anbm | n,m ≥ 1} ∪ {anbnanbm | n,m ≥ 1}
∪{anbmambm | n,m ≥ 1} ∪ {anbnanbmambm | n,m ≥ 1} .

By
(anbmambm, arbrarbr) ` anbmambr
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we have anbmambr ∈ spl2(G), but anbmambr /∈ spl1(G).
We shall show that

L(G′) = {{a}+{bnan | n ≥ 1}∗{b}+.

We prove by induction that splm(G′) contains only words of this form. Above we have
seen that this statement holds for spl1(G′). The splicing of two such words

arbn1an1bn2an2 . . . bnsansbt and apbm1am1bm2am2 . . . bmkamkbq

results in
arbn1an1bn2an2 . . . bnf anf bmgamgbmg+1amg+1 . . . bmkamkbq,

which is of the same form, again. Thus, if splm(G′) only contains such words, then this
also holds for splm+1(G′).

It remains to prove that all such words can be obtained. We prove this by induction
on the number of changes from a to b. If we only have one change, then we are interested
in the words arbt with r, t ≥ 1. All these words are already in spl1(G′).

From the words arbn1an1bn2an2 . . . bnsansbt with s + 1 changes and apbmambq we get
arbn1an1bn2an2 . . . bnsansbmambq with s + 2 changes.

Example 11.16 Let

G = ({a, b, c}, {#c$c#a}, {cmanbn | n ≥ 1})
where m ≥ 1 is a fixed number. Then we get

splr(G) = {ctanbn | 0 ≤ t ≤ m, n ≥ 1} for r ≥ 1,

which implies
L(G) = {ctanbn | 0 ≤ t ≤ m,n ≥ 1}.

We slightly extend the definition of splicing systems by allowing an intersection with
T ∗ where T is a subset of the underlying alphabet. This is analogous to the situation
in grammars where we take in the language only words over the terminal alphabet. The
following definition formalizes this idea.

Definition 11.17 i) An extended splicing system is a quadruple G = (V, T, R, A) where
H = (V,R, A) is a splicing system and T is a subset of V .

ii) The language generated by an extended splicing system G is defined as L(G) =
L(H) ∩ T ∗.

Example 11.18 Let

G = ({a, b, c}, {a, b}, {#c$c#a}, {cmanbn | n ≥ 1})
where m ≥ 1 is a fixed number. From Example 11.16, we obtain

L(G) = {ctanbn | 0 ≤ t ≤ m,n ≥ 1} ∩ {a, b}∗
= {anbn | n ≥ 1} .
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We now extend Definitions 11.14 and 11.17 to language families.

Definition 11.19 For two language families L1 and L2, we define the sets Spl(L1,L2)
and ESpl(L1,L2)) as the sets of all languages L(G) generated by some splicing system
G = (V, R, A) and by some extended splicing system G = (V, T, R,A)) with A ∈ L1 and
R ∈ L2, respectively.

We now give the position of the sets Spl(L1,L2) in the Chomsky hierarchy where L1

and L2 are some families of the Chomsky hierarchy or the family of finite languages.

Theorem 11.20 The table of Figure 11.12 holds, where at the intersection of the row
marked by X and the column marked by Y we give Z if L(Z) = Spl(L(X),L(Y )) and
Z1/Z2 if L(Z1) ⊂ Spl(L(X),L(Y )) ⊂ L(Z2).

FIN REG CF CS RE
FIN FIN/REG FIN/RE FIN/RE FIN/RE FIN/RE
REG REG REG/RE REG/RE REG/RE REG/RE
CF CF CF/RE CF/RE CF/RE CF/RE
CS CS/RE CS/RE CS/RE CS/RE CS/RE
RE RE RE RE RE RE

Figure 11.12: Relations for the families Spl(L1,L2)

We omit the proof of Theorem 11.20. Most of the results can easily be obtained from
the proof of the following theorem which is the statement for the families ESpl(L1,L2).

Theorem 11.21 The table of Figure 11.13 holds, where at the intersection of the row
marked by X and the column marked by Y we give Z if L(Z) = ESpl(L(X),L(Y )).

FIN REG CF CS RE
FIN REG RE RE RE RE
REG REG RE RE RE RE
CF CF RE RE RE RE
CS RE RE RE RE RE
RE RE RE RE RE RE

Figure 11.13: Relations for the families ESpl(L1,L2)

Before giving the proof of Theorem 11.21 we present some lemmas which will be used
in the proof.

The first lemma is the counterpart of Lemma 11.9 which follows from the definitions,
again.

Lemma 11.22 For any language families L1,L2,L′1,L′2 with L1 ⊆ L′1 and L2 ⊆ L′2, we
have ESpl(L1,L2) ⊆ ESpl(L′1,L′2). 2
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Lemma 11.23 If a language family L is closed under concatenation with symbols, then
L ⊆ ESpl(L,L(FIN)).

Proof. Let L be an arbitrary language of L over the alphabet V , and let c be a letter
not contained in V . Then we consider the splicing system

G = (V ∪ {c}, V, {#c$c#}, L{c}).
It is easy to see that

spl0(G) = L{c},
spln(G) = L ∪ L{c} for n ≥ 1,

L(G) = L.

Thus L ∈ ESpl(L,L(FIN) which proves the statement. 2

Lemma 11.24 L(REG) ⊆ Espl(L(FIN),L(FIN)).

Proof. Let L be an arbitrary regular language over T ∗. Then there exists a regular
grammar G = (N, T, P, S) such that L = L(G) and all rules of P have the form X → aY
or X → a where X and Y are nonterminals and a is a terminal (see Theorem 2.28).

We construct the extended splicing system

H = (N ∪ T ∪ {Z}, T, R1 ∪R2, {S} ∪ A1 ∪ A2)

with

R1 = {#X$Z#aY | X → aY ∈ P, X, Y ∈ N, a ∈ T},
R2 = {#X$ZZ#a | X → a ∈ P, X ∈ N, a ∈ T},
A1 = {ZaY | X → aY ∈ P, X, Y ∈ N, a ∈ T},
A2 = {ZZa | X → a ∈ P, X ∈ N, a ∈ T}.

Note that the set of splicing rules and the set of start words are finite.
Now we apply the splicing rules in the following order:

(S, Za1A1) `R1 a1A1 where S → a1A1 ∈ P

(a1A1, Za2A2) `R1 a1a2A2 where A1 → a2A2 ∈ P ,

(a1a2A2, Za3A3) `R1 a1a2a3A3 where A2 → a3A3 ∈ P ,
. . . . . .

(a1a2 . . . an−2An−2, Zan−1An−1) `R1 a1a2 . . . an−1An−1 where An−2 → an−1An−1 ∈ P ,

(a1a2 . . . an−1An−1, ZZan) `R1 a1a2 . . . an where An−1 → an ∈ P .

This can be considered as a simulation of the derivation

S =⇒ a1A1 =⇒ a1a2A2 =⇒ . . .

=⇒ a1a2 . . . an−2An−2

=⇒ a1a2 . . . an−2an−1An−1

=⇒ a1a2 . . . an−2an−1an.
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This proves L = L(G) ⊆ L(H).
It is easy to see that there are no other possibilities to obtain a word of T ∗ by iterated

splicing. Therefore L(H) ⊆ L, too.
Hence any regular language L is in ESpl(L(FIN),L(FIN)). 2

Lemma 11.25 For any family L which is closed under union, concatenation, Kleene-
closure, homomorphisms, inverse homomorphisms and intersections with regular sets,
ESpl(L,L(FIN)) ⊆ L.

Proof. We omit the long and technically hard proof. A complete proof can be found in
[10]. 2

Lemma 11.26 For any recursively enumerable language L ⊆ T ∗, there is an extended
splicing system G = (V, T, R,A) with a finite set A and a regular set R of splicing rules
such that L(G) = L.

Proof. Let L be an arbitrary recursively enumerable language, and let G = (N, T, P, S)
be the phrase structure grammar such that L(G) = L. Then we construct the extended
splicing system H = (V, T,R, A) with

U = N ∪ T ∪ {B},
V = U ∪ {X,X ′, Y, Z} ∪ {Ya | a ∈ U}
A = {XBSY, ZY, XZ} ∪ {ZvY | u → v ∈ P}

{ZYa | a ∈ U} ∪ {X ′aZ | a ∈ U}

and R consists of all rules of the following forms:

1) Xw#aY $Z#Ya for a ∈ U,w ∈ U∗,
2) X ′a#Z$X#wYa for a ∈ U,w ∈ U∗,
3) X ′w#Ya$Z#Y for a ∈ U,w ∈ U∗,
4) X#Z$X ′#wY for w ∈ U∗,
5) Xw#uY $Z#vY for u → v ∈ P, w ∈ U∗,
6) #ZY $XB#wY for w ∈ T ∗,
7) #Y $XZ#.

The letters X, X ′, Y, Z and Ya for a ∈ U are used as endmarkers (more precisely, as
the first or last letter of the word. This leads to the situation that the rules 1) – 5) involve
complete words.

In the first step we have to apply a splicing rule to two words of A. If we do not take
XBSY as one of these words, the only possible simple splicing are

(ZY,XZ) `7 Z and (ZvY, XZ) `7 Zv

(where the index of ` refers to the type of the rule which is used), and in both cases there
is no splicing rule which can be applied to the resulting word. Thus we have to start with
XBSY .
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Assume that we have obtained XBwY . Then we get the following sequence of splicings
using the word obtained in the last step together with a word of A:

(XBw′aY, ZYa) `1 XBw′Ya,

(X ′aZ, XBw′Ya) `2 X ′aBw′Ya,

(X ′aBwYa, ZY ) `3 X ′aBw′,

(XZ,X ′aBw′Y ) `4 XaBw′Y.

Therefore we have performed a shift of the last letter a to the beginning of the word.
This process can be iterated such that we can get any word Xw2Bw1 where w = w1w2.
Further we see that B is used to mark the beginning of the original word w.

Without blocking the splicing the above sequence is the only possible one besides the
special situation Xw2Bw′

1uY where u is a left hand side of a production u → v ∈ P .
Then we also can apply one rule of type 5 and get

(Xw2Bw′
1uY, ZvY ) `5 Xw2Bw′

1vY.

Thus we can get the following sequence of results of splicings

XBw′
1uw2Y, . . . , Xw2Bw′

1uY, Xw2Bw′
1vY, . . . , XBw′

1vw2Y.

Therefore we have simulated a derivation step of G (besides the endmarkers).
Note that during one complete shift we can apply some rules to non-overlapping words.

This is can be done in G by some derivation steps, too.
If we finish the simulation of a terminating derivation in G, then we get a word XBwY

with w ∈ T ∗ and w ∈ L. We apply a splicing rule of type 6) and 7) and yield

(ZY, XBwY ) `6 wY,

(wY,XZ) `7 w.

Thus we have shown that L = L(G) ⊆ L(H).
Furthermore, it can be seen that other sequences of splicing rules lead to a blocking

situation and the obtained word is not a word of T ∗. Therefore L(H) ⊆ L, too. 2

Lemma 11.27 For any extended splicing system G = (V, T, R, A), L(G) is a recursively
enumerable set.

Proof. The proof can be given by constructing a corresponding phrase structure gram-
mar. We omit the detailed construction. 2

Proof of Theorem 11.21 By Lemmas 11.22, 11.24 and 11.25, we obtain

L(REG) ⊆ ESpl(L(FIN),L(FIN)) ⊆ ESpl(L(REG),L(REG)) ⊆ L(REG).

These relations imply

L(REG) = ESpl(L(FIN),L(FIN)) = ESpl(L(REG),L(FIN)).
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By Lemmas 11.23 and 11.25, we get

L(CF) ⊆ ESpl(L(CF),L(FIN)) ⊆ L(CF)

which yields L(CF) = ESpl(L(CF),L(FIN)).

Analogously, we obtain L(RE) = ESpl(L(RE),L(FIN)).

In the proof of Theorem 11.8 we have shown that, for any recursively enumerable
language L, there is a context-sensitive language L′ and a regular set R of splicing rules
such that L = spl(L′, R). It is easy to see (or to prove analogously to Lemma 11.23) that
L = L(G) for the extended splicing system G = (T ∪ {c1, c2, c3}, T, R, L′).

Therefore we have L(RE) ⊆ ESpl(L(CS),L(FIN)). Together with Lemma 11.22 and
L(RE) = ESpl(L(RE),L(FIN)) we get L(RE) = ESpl(L(CS),L(FIN)).

Lemma 11.26 and 11.27 can be formulated as L(RE) ⊆ ESpl(L(FIN),L(REG)) and
Espl(L(RE),L(RE) ⊆ L(RE). By combination with Lemma 11.22, we obtain L(RE) =
ESpl(L(X),L(Y )) for X ∈ {FIN,REG,CF,CS,RE} and Y ∈ {REG,CF,CS,RE}.

2

11.3.3 Remarks on descriptional complexity

In this section we study hierarchies which can be obtained by restricting some parameters
which can be seen immediately from the (extended) splicing system.

First we define the parameters or measures which we shall consider and the corre-
sponding language families.

Definition 11.28 i) For a splicing system G = (V,R,A) or an extended splicing system
G = (V, T, R,A) we define the complexity measures r(G), a(G) and l(G) by

r(G) = max{|u| | u = ui for some u1#u2$u3#u4 ∈ R, 1 ≤ i ≤ 4},
a(G) = #(A),

l(G) = max{|z| | z ∈ A}.

ii) For a language family L and n ≥ 1 and m ∈ {a, l}, we define the families Ln(r,L)
and Ln(m,L) as the set of languages L(G) where G = (V, R, A) is a splicing system with
r(G) ≤ n and A ∈ L and with m(G) ≤ n and R ∈ L, respectively.

iii) Analogously, for m ∈ {r, a, l}, we define the sets Ln(em,L) taking extended splicing
systems (instead of splicing systems).

r(G) is called the radius of G since it gives the maximal neighbourhood of the place
of splitting which is involved in the splicing. The other two measures concern the size of
the (finite) set of start words where the size is measured by the cardinality of the set or
the maximal length of words in it.

As a first result on the descriptional complexity of splicing systems we show that we
obtain an infinite hierarchy between the classes L(FIN) and Spl(L(FIN),L(FIN)) with
respect to the radius.
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Theorem 11.29 For any n ≥ 1,

L(FIN) ⊂ Ln(r,L(FIN)) ⊂ Spl(L(FIN),L(FIN))

and
Ln(r,L(FIN)) ⊂ Ln+1(r,L(FIN)).

Proof. All inclusions follow by definition and the construction in the proof of Lemma
11.23.

In order to prove that the inclusion L(FIN) ⊆ L1(r,L(FIN)) is proper, we consider
the splicing system

G = ({a}, {a#$#a}, {a})
for which

spli(G) = {a, a2, . . . , a2i} ,

L(G) = {a}+

hold (the statement on spli(G) can easily be proved by induction on i; the only new words
in spli+1(G) are obtained by (a2i

, ak) ` a2i+k where 1 ≤ k ≤ 2i) which generates an infinite
language and satisfies r(G) ≤ 1.

We now prove that Ln(r,L(FIN)) ⊂ Ln+1(r,L(FIN)) for n ≥ 1, which implies the
strictness of Ln(r,L(FIN)) ⊂ Spl(L(FIN),L(FIN)), too.

For n ≥ 1, let
Ln = {a2nb2namb2na2n | m ≥ 2n + 1}.

The splicing system

Gn = ({a, b}, {an+1#an$an+1#an}, {a2nb2na2n+2b2na2n})
satisfies r(Gn) = n + 1. Let

(u1r1r2u2, v1r3r4v2) ` w, u1r1r2u2 = a2nb2nasb2na2n, v1r3r4v2 = a2nb2natb2na2n

for some integers s, t ≥ 2n + 1. Since r1r2 = r3r4 = a2n+1, in both word we have to
perform the split in the inner part am with m ≥ 2n+1 which leads to w = a2nb2narb2na2n

with 2n + 1 ≤ r ≤ s + t− 2n− 1. Because we start with a word where the inner part has
the length 2n + 2 we can produce by iterated applications any length in the inner part.
Therefore L(Gn) = Ln. Thus Ln ∈ Ln+1(r,L(FIN)).

Now let us assume that Ln = L(G) for some splicing system G = ({a, b}, R,A) with
A ∈ L(FIN) and r(G) ≤ n. Let p = r1#r2$r3#r4 be a splicing rule of R. Then |r1r2| ≤ 2n.
We apply p to the words u = u1r1r2u2 = a2nb2narb2na2n and v = v1r3r4v2

Let r1r2 ∈ {a}+. Then we can apply p by splitting the prefix a2n of u. We get the
word w1 = u1r1r4v2. Since w1 has to be an element of L(G) and therefore of Ln and u1r1

contains only a’s and r4v2 = z2b
2nakb2na2n for some z2 ∈ {a}∗ and some k ≥ 2n + 1. If

we now apply p to u and v by splitting the suffix a2n of u, we get

w2 = a2nb2nak′b2nz1z2b
2nakb2na2n ∈ L(G)

which does not belong to Ln in contrast to L(G) = Ln.
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In the other cases, i. e., r1r2 is contained in {a}+{b}+ or {b}+ or {b}+{a}+, we also
find two different places where r can be used in u and at least one of these words does
not belong to Ln.

Hence we have shown that Ln cannot be generated by a splicing system G with
r(G) ≤ n.

This yields Ln(r,L(FIN)) ⊂ Ln+1(r,L(FIN)). 2

The situation changes completely if we switch to another family L as can be seen from
the following theorem where the hierarchies collapse at the first level.

Theorem 11.30 For L ∈ {L(REG),L(CF),L(RE)} and n ≥ 1, Ln(r,L) = L.

Proof. Let L ∈ {L(REG),L(CF),L(RE)}.
For a language L ∈ L and L ⊆ V ∗, we consider the splicing system

G = (V ∪ {c}, {#c$c#}, L)

with c /∈ V . Then the splicing rule cannot be applied which yields spli(G) = L and
therefore L(G) = L. Hence

L ⊆ L1(r,L). (11.4)

Furthermore, by definition and Theorem 11.20 we have

Ln(r,L) ⊆ Lm(r,L) ⊆ L(L,L(FIN)) = L (11.5)

for m ≥ n. From (11.4) and (11.5) we get the statement of the lemma. 2

We now investigate the hierarchies obtained for the measures related to the size of the
set of start words in the case of extended systems.

Theorem 11.31 For any n ≥ 1, Ln(ea,L(REG)) = L(RE).

Proof. By definition and Theorem 11.21, for any n ≥ 1,

L1(ea,L(REG)) ⊆ Ln(ea,L(REG)) ⊆ L(L(FIN),L(REG)) = L(RE).

Therefore it is sufficient to prove that any recursively enumerable language L is contained
in L1(ea,L(REG)).

Let L ∈ L(RE). Then L = L(G) for some extended splicing system G = (V, T,R,A)
with a finite set A = {w1, w2, . . . , wn}. If n = 1, then L ∈ L1(ea,L(REG)). If n ≥ 2 we
construct the extended splicing system

G′ = (V ∪ {c, c′}, T, R′, {w})

with two additional letters c and c′,

R′ = R ∪ {#c′c$c#c′, #c$c′#, #c′$c#}

and
u = c′cw1cw2cw3c . . . cwncc′.

Let i be an integer with 1 ≤ i ≤ n. We have the following sequence of splicings
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(u, u) ` c′ using #c′c$c#c′,
(u, c′) ` c′cw1cw2c . . . cwi−1cwi = ui using #c$c′#,
(c′, ui) ` wi using #c′$c#.

Thus we have wi ∈ spl3(G′) for 1 ≤ i ≤ n. Taking these words and the rules of R ⊂ R′

we can generate any word of L(G) and therefore L(G) ⊆ L(G′).
If we apply a rule r1#r2$r3#r4 ∈ R to a word w, then w = u1r1r2u2 or w = u1r1r2u2cx2

or w = x1cu1r1r2u2cx2 or w = x1cu1r1r2u2 for some words u1, u2 ∈ V ∗ and x1, x2 ∈
(V ∪ {c, c′})∗. The same situation holds with respect to the second word w′ containing
r3r4. We discuss now the case that w is of the third type and w′ is of the second type, i. e.,
w = x1cu1r1r2u2cx2 and w′ = v1r3r4v2cy2. Then we get (w,w′) ` x1cu1r1r4v2cy2 which
corresponds to a splicing of two words over V neighboured by c. Hence any generation of
a word over V can be obtained by a first phase using only rules from R′ \R and yielding
words from A and a second phase using only rules of R and yielding words of L(G). Hence
L(G′) ⊆ L(G). 2

Theorem 11.32 For any n ≥ 2, L1(el,L(REG)) ⊂ Ln(el,L(REG)) = L(RE).

Proof. By definition and Theorem 11.21, for any n ≥ 2,

L2(ea,L(REG)) ⊆ Ln(ea,L(REG)) ⊆ L(L(FIN),L(REG)) = L(RE).

Therefore it is sufficient to prove that any recursively enumerable language L is contained
in L2(ea,L(REG)).

Let L ∈ L(RE). Then L = L(G) for some extended splicing system G = (V, T,R,A)
with a finite set A = {w1, w2, . . . , wn}. For any i, 1 ≤ i ≤ n, let ci and c′i be two new
symbols. We set

G′ = (V ∪
n⋃

i=1

{ci, c
′
i}, T, R′, A′)

with

A′ = {cia | 1 ≤ i ≤ n, a ∈ V } ∪
n⋃

i=1

{ci, c
′
i} ,

Ri = {cix#$ci#a | x, xa are prefixes of wi, a ∈ V }

∪
n⋃

i=1

{ciwi#$#c′i, #ci$ci#wic
′
i, wi#c′i$c

′
i#} ,

R′ = R ∪
n⋃

i=1

Ri .

Let wi = ai,1ai,2 . . . ai,ri
. We have the following splicings

(ciai,1, ciai,2) ` ciai,1ai,2 using ciai,1#$ci#ai,2,
(ciai,1ai,2, ciai,3) ` ciai,1ai,2ai,3 using ciai,1ai,2#$ci#ai,3,
. . . . . . . . . . . .

(ciai,1ai,2 . . . ai,ri−1, ciai,ri
) ` ciai,1ai,2 . . . ai,ri

using ciai,1ai,2 . . . ai,ri−1#$ci#ai,ri
.
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Therefore ciwi is obtained. We continue by

(ciwi, c
′
i) ` ciwic

′
i using ciwi#$#c′i,

(ci, ciwic
′
i) ` wic

′
i using #ci$ci#wic

′
i,

(wic
′
i, c

′
i) ` wi using wi#c′i$c

′
i#.

Thus we get wi for 1 ≤ i ≤ n. Using the splicing rules from R we can now generate all
words of L(G) = L. Thus L ⊆ L(G′).

Since any start word contains at least one symbol ci or c′i, we have to cancel these
symbols at a certain step. These cancellations are only possible if – besides the endmarkers
ci and c′i – a word wi ∈ A is produced. If we apply rules from R before ci and c′i have
been cancelled, then the word – besides the endmarkers – is a prefix of wi and we can
generate from it wi or it is not a prefix of wi and there is no continuation which cancels
the endmarkers. Thus the above presented steps by splicing are the only possible ones,
Hence L(G′) ⊆ L, too.

Obviously, if we generate a language L ⊂ T ∗ by a system G, where the maximal
length of the axioms is 1, then the set of axioms has to contain at least one letter a of
T . Then a ∈ L(G). However, there are (finite) recursively enumerable sets which contain
only words of length greater than 2. Thus L1(el,L(REG)) ⊂ L(RE) which proves the
statement. 2


